Donation

The Black Swan Research Initiative® (BSRI) is the International Myeloma Foundation's signature research program aimed at developing a definitive cure for myeloma. Led by a team of global myeloma experts, the BSRI provides coordination and support for more than 40 research projects around the world. Launched in 2012, BSRI research is already resulting in tangible benefits for myeloma patients. Learn about the latest BSRI manuscripts, abstracts, and presentations.

Manuscripts

  1. Pérez-Escurza O, Flores-Montero J, Óskarsson J.Þ, et al. Deep immune cell profiling in blood and bone marrow of early stage monoclonal gammopathy: an iStopMM and ECRIN-M3 collaborative study. Blood Cancer J. 15, 46 (2025). https://doi.org/10.1038/s41408-025-01255-3
  2. Jónsdóttir ÁH, Sigurjónsdóttir HÁ, Thorsteinsdóttir S, et al. Approaching hypercalcemia in monoclonal gammopathy of undetermined significance: insights from the iStopMM screening study. Blood. 2025;145(9):970-974. https://doi.org/10.1182/blood.2024025624   
  3. 'Long T E, Rögnvaldsson S, Thorsteinsdottir S, et al. Revised Definition of Free Light Chains in Serum and Light Chain Monoclonal Gammopathy of Undetermined Significance: Results of the Istopmm Study. Blood 2023; 142 (suppl 1): 535. https://doi.org/10.1182/blood-2023-188547 
  4. Rögnvaldsson S, Thorsteinsdottir S, Óskarsson JÞ, et al. The Early Benefits and Psychological Effects of Screening for Monoclonal Gammopathy of Undetermined Significance: Results of the Istopmm Study. Blood 2023; 142 (suppl 1): 214. https://doi.org/10.1182/blood-2023-186397 
  5. Thorsteinsdottir S, Sverrisdottir I, Rögnvaldsson S, et al. Risk Factors of Smoldering Multiple Myeloma: Results from the Screened Istopmm Study. Blood 2023; 142 (suppl 1): 3397. https://doi.org/10.1182/blood-2023-188469
  6. Óskarsson JÞ, Rögnvaldsson S, Thorsteinsdottir S, et al. Predicting an Underlying Clonal Plasma Cell Population in Light-Chain Monoclonal Gammopathy of Undetermined Significance Using Free Light-Chain Ratio. Blood 2023; 142 (suppl 1): 530. https://doi.org/10.1182/blood-2023-182661
  7. Palmason R, Ekberg S, Eythorsson E, et al. Sars-Cov-2 Infection Does Not Lead to Progression of Monoclonal Gammopathy of Undetermined Significance: Results from the Population-Based iStopmm Screening Study. Blood 2023; 142 (suppl 1): 4766. https://doi.org/10.1182/blood-2023-173078 
  8. Rögnvaldsson S, Gasparini A, Thorsteinsdottir S, et al. Monoclonal Gammopathy of Undetermined Significance and the Risk of Thrombotic Events: Results from Istopmm, a Population-Based Screening Study in Iceland. Blood 2023; 142 (suppl 1): 216–218 https://doi.org/10.1182/blood-2023-186098 
  9.  Long T E, Eythorsson E, Rögnvaldsson S, et al. Monoclonal Gammopathy of Undetermined Significance and Risk of Chronic Kidney Disease: Results of the Population-Based Iceland Screens, Treats, or Prevents Multiple Myeloma (iStopMM) Study. Blood 2022; 140 (suppl 1): 10108–10109. https://doi.org/10.1182/blood-2022-170623 
  10. Sverrisdottir I S, Thorsteinsdóttir S, Rögnvaldsson S, et al. Autoimmune Diseases Are Not Associated with Monoclonal Gammopathy of Undetermined Significance: Results of the Prospective Population-Based Istopmm Study. Blood 2022; 140 (suppl 1): 10031–10032. https://doi.org/10.1182/blood-2022-169393 
    Hermouet S, Mennesson N, Allain-Maillet S, et al. Analysis of smoldering multiple myeloma according to the target of the monoclonal immunoglobulin of patients. Hemasphere. 2024;8(12):e70053. Published 2024 Dec 11. doi:10.1002/hem3.70053
  11. Rögnvaldsson S, Þorsteinsdóttir S, Syriopoulou E, et al. Prior Cancer And Risk Of Monoclonal Gammopathy Of Undetermined Significance: A Population-Based Study In Iceland And Sweden. Haematologica (2024). https://doi.org/10.3324/haematol.2023.284365
  12. Rögnvaldsson S, Thorsteinsdóttir S, Kristinsson SY. Screening in Multiple Myeloma and Its Precursors: Are We There Yet? Clin Chem. 2024;70(1):128-139. doi:10.1093/clinchem/hvad148
  13. Rodríguez-García A, Mennesson N, Hernandez-Ibarburu G, et al. Impact of viral hepatitis therapy in multiple myeloma and other monoclonal gammopathies linked to hepatitis B or C viruses. Haematologica. 2024;109(1):272-282. https://doi.org/10.3324/haematol.2023.283096
  14. Sigurbergsdóttir AÝ, Rögnvaldsson S, Thorsteinsdóttir S, et al. Disease associations with monoclonal gammopathy of undetermined significance can only be evaluated using screened cohorts: results from the population-based iStopMM study. Haematologica. 2023;108(12):3392-3398.  https://doi.org/10.3324/haematol.2023.283191
  15. Pérez-Escurza O, Flores-Montero J, Óskarsson JÞ, et al. Immunophenotypic assessment of clonal plasma cells and B-cells in bone marrow and blood in the diagnostic classification of early stage monoclonal gammopathies: an iSTOPMM study. Blood Cancer J. 2023;13(1):182 https://doi.org/10.1038/s41408-023-00944-1
  16. Óskarsson JÞ, Rögnvaldsson S, Thorsteinsdottir S, et al. Determining hemodilution in diagnostic bone marrow aspirated samples in plasma cell disorders by next-generation flow cytometry: Proposal for a bone marrow quality index. Blood Cancer J. 2023;13(1):177. https://doi.org/10.1038/s41408-023-00951-2 
  17. Sigurbergsdóttir AÝ, Rögnvaldsson S, Thorsteinsdóttir S, et al. Disease associations with monoclonal gammopathy of undetermined significance can only be evaluated using screened cohorts: results from the population-based iStopMM study. Haematologica. 2023;108(12):3392-3398. https://doi.org/10.3324/haematol.2023.283191 
  18. Rögnvaldsson S, Long TE, Thorsteinsdottir S, et al. Validity of chronic disease diagnoses in Icelandic healthcare registries. Scand J Public Health. 2023;51(2):173-178. https://doi.org/10.1177/14034948211059974 
  19. Thorsteinsdóttir S, Gíslason G K, Aspelund T, et al. Author Correction: Prevalence of smoldering multiple myeloma based on nationwide screening. Nat Med 29, 3269 (2023). https://doi.org/10.1038/s41591-023-02308-5 
  20. Long TE, Indridason OS, Palsson R, et al. Defining new reference intervals for serum free light chains in individuals with chronic kidney disease: Results of the iStopMM study. Blood Cancer J. 2022;12(9):133. https://doi.org/10.1038/s41408-022-00732-3
  21. Sigurbergsdóttir AÝ, Love TJ, Kristinsson SY. Autoimmunity, Infections, and the Risk of Monoclonal Gammopathy of Undetermined Significance. Front Immunol. 2022;13:876271. https://doi.org/10.3389/fimmu.2022.876271
  22. Rodríguez-García A, Linares M, Luz Morales M, et al. Efficacy of Antiviral Treatment in Hepatitis C Virus (HCV)-Driven Monoclonal Gammopathies Including Myeloma. Front. Immunol., 11 January 2022 | https://doi.org/10.3389/fimmu.2021.797209
  23. Puig N, Flores-Montero J, Burgos L, et al. Reference Values to Assess Hemodilution and Warn of Potential False-Negative Minimal Residual Disease Results in Myeloma. Cancer. 2021;13(19):4924. https://doi.org/10.3390/cancers13194924
  24. Rögnvaldsson S, Love TJ, Thorsteinsdottir S, et al. Iceland screens, treats, or prevents multiple myeloma (iStopMM): a population-based screening study for monoclonal gammopathy of undetermined significance and randomized controlled trial of follow-up strategies [published correction appears in Blood Cancer J. 2023 Mar 20;13(1):39]. Blood Cancer J. 2021;11(5):94. https://doi.org/10.1038/s41408-023-00814-w
  25. Rognvaldsson S, Eythorsson E, Thorsteinsdottir S, et al. Monoclonal gammopathy of undetermined significance and COVID-19: a population-based cohort study. Blood Cancer J. 2021;11(12):191. https://doi.org/10.1038/s41408-021-00580-7 
  26. Jiménez Ubieto A, Paiva B, Puig N, et al. Validation of the International Myeloma Working Group standard response criteria in the PETHEMA/GEM2012MENOS65 study: are these times of change? Blood. 2021 Nov 11;138(19):1901-1905. https://doi.org/10.1182/blood.2023021577
  27. Alameda D, Goicoechea I, Vacri M, et al. Tumor cells in light-chain amyloidosis and myeloma show distinct transcriptional rewiring of normal plasma cell development. Blood. 2021 Oct 28;138(17):1583-1589. doi: 10.1182/blood.2020009754.
  28. Puig N, Flores-Montero J, Burgos L, et al. Reference Values to Assess Hemodilution and Warn of Potential False-Negative Minimal Residual Disease Results in Myeloma. Cancers (Basel). 2021 Sep 30;13(19):4924. doi: 10.3390/cancers13194924.
  29. Rögnvaldsson S, Love TJ, Thorsteinsdottir S, et al. Iceland screens, treats, or prevents multiple myeloma (iStopMM): a population-based screening study for monoclonal gammopathy of undetermined significance and randomized controlled trial of follow-up strategies. Blood Cancer J. 2021 May 17;11(5):94.doi: 10.1038/s41408-021-00480-w
  30. Carrasco-Leon A, Ezponda T, Meydan C, et al. Characterization of complete lncRNAs transcriptome reveals the functional and clinical impact of lncRNAs in multiple myeloma. Leukemia. 2021 May;35(5):1438-1450. doi: 10.1038/s41375-021-01147-y. Epub 2021 Feb 17.
  31. Mendonca de Pontes R, Flores-Montero J, Sanoja-Flores L, et al. B-Cell Regeneration Profile and Minimal Residual Disease Status in Bone Marrow of Treated Multiple Myeloma Patients. Cancers (Basel). 2021 Apr 3;13(7):1704. doi: 10.3390/cancers13071704
  32. Damasceno D, Almeida J, Teodosio C, et al. Monocyte Subsets and Serum Inflammatory and Bone-Associated Markers in Monoclonal Gammopathy of Undetermined Significance and Multiple Myeloma. Cancers (Basel). 2021 Mar 22;13(6):1454. doi: 10.3390/cancers13061454
  33. Palladini G, Paiva B, Wechalekar A, et al. Minimal residual disease negativity by next-generation flow cytometry is associated with improved organ response in AL amyloidosis. Blood Cancer J. 2021 Feb 16;11(2):34. doi: 10.1038/s41408-021-00428-0.
  34. Catalano C, Paramasivam N, Blocka J, et al. Characterization of rare germline variants in familial multiple myeloma. Blood Cancer J. 2021 Feb 13;11(2):33.
    doi: 10.1038/s41408-021-00422-6
  35. Cuenca I, Alameda D, Sanchez-Vega B, et al. Immunogenetic characterization of clonal plasma cells in systemic light-chain amyloidosis. Leukemia. 2021 Jan;35(1):245-249. doi: 10.1038/s41375-020-0800-6. Epub 2020 Mar 19.
  36. Garces JJ, Bretones G, Burgos L, et al. Circulating tumor cells for comprehensive and multiregional non-invasive genetic characterization of multiple myeloma. Leukemia. 2020 Nov; 34(11):3007-3018. doi: 10.1038/s41375-020-0883-0. Epub 2020 Jun 1.
  37. Perez C, Botta C, et al. Immunogenomic identification and characterization of granulocytic myeloid-derived suppressor cells in multiple myeloma. Blood. 2020 Jul 9;136(2):199-209. doi: 10.1182/blood.2019004537.
  38. Burgos L, Puig N, Cedena MT, et al. Measurable residual disease in multiple myeloma: ready for clinical practice? J Hematol Oncol. 2020 Jun 22;13(1):82. doi: 10.1186/s13045-020-00911-4.
  39. Garcés JJ, Simicek M, Vicari M, et al. Transcriptional profiling of circulating tumor cells in multiple myeloma: A new model to understand disease dissemination. Leukemia 2020; 34(2), 589-603. https://doi.org/10.1038/s41375-019-0588-4
  40. Maia C, Puig N, Cedena MT, et al. Biological and clinical significance of dysplastic hematopoiesis in patients with newly diagnosed multiple myeloma. Blood (2020 June) 135 (26): 2375–2387. https://ashpublications.org/blood/article/135/26/2375/454409/Biological-and-clinical-significance-of-dysplastic
  41. Sanoja-Flores L, Flores-Montero J, et al. Detection of Circulating Tumor Plasma Cells in Monoclonal Gammopathies: Methods, Pathogenic Role, and Clinical Implications. Cancers (Basel). 2020 Jun 8;12(6):1499. doi: 10.3390/cancers12061499.
  42. Paiva B, Puig N, Cedena MT, et al. Measurable Residual Disease by Next-Generation Flow Cytometry in Multiple Myeloma. J Clin Oncol. 2020 Mar 10; 38(8):784-792. doi: 10.1200/JCO.19.01231. Epub 2019 Nov 26.
  43. Garces JJ, Simicek M, Paiva B, et al. Transcriptional profiling of circulating tumor cells in multiple myeloma: a new model to understand disease dissemination. Leukemia. 2020 Feb; 34(2):589-603. doi: 10.1038/s41375-019-0588-4. Epub 2019 Oct 8.
  44. Sanoja-Flores L, Flores-Montero J, et al. Blood monitoring of circulating tumor plasma cells by next generation flow in multiple myeloma after therapy. Blood. 2019 Dec 12;134(24):2218-2222. https://ashpublications.org/blood/article-lookup/doi/10.1182/blood.2019002610 
  45. Paiva B, Puig N, et al. Measurable Residual Disease by Next-Generation Flow Cytometry in Multiple Myeloma. J Clin Oncol. 2019 Nov 26:JCO1901231. https://ascopubs.org/doi/10.1200/JCO.19.01231 
  46. Blocka J, Durie BGM, et al. Familial Cancer: How to Successfully Recruit Families for Germline Mutations Studies? Multiple Myeloma as an Example. Clinical Lymphoma Myeloma Leukemia. 2019 Oct;19(10):635-644 https://www.sciencedirect.com/science/article/abs/pii/S2152265019302496
  47. Mithraprabhu S, Spencer A, et al. DNA-Repair Gene Mutations Are Highly Prevalent in Circulating Tumour DNA from Multiple Myeloma Patients. Cancers (Basel). 2019 Jun 29;11(7). pii: E917. https://doi.org/10.3390/cancers11070917
  48. Spencer A, et al. Utility of Circulating Cell-Free RNA Analysis for the Characterization of Global Transcriptome Profiles of Multiple Myeloma Patients. Cancers (Basel). 2019 Jun 25;11(6). pii: E887. doi: 10.3390/cancers11060887. https://www.ncbi.nlm.nih.gov/pubmed/31242667 
  49. Mithraprabhu S, Morley R, et al. Monitoring tumour burden and therapeutic response through analysis of circulating tumour DNA and extracellular RNA in multiple myeloma patients. Leukemia. 2019 Aug;33(8):2022-2033. https://www.nature.com/articles/s41375-019-0469-x 
  50. Palladini G, Paiva B, Wechalekar A, et al.  Evaluation of minimal residual disease using next-generation flow cytometry in patients with AL amyloidosis. Blood Cancer J. 2018;8(5):46 https://doi.org/10.1038/s41408-018-0086-3 
  51. Puig N, Paiva B, et al. Flow cytometry for fast screening and automated risk assessment in systemic light-chain amyloidosis. Leukemia. 2019 May;33(5):1256-1267. doi: 10.1038/s41375-018-0308-5. Epub 2018 Dec 12. 
  52. L. Sanoja-Flores, J. Flores-Montero, et al. Next generation flow for minimally-invasive blood characterization of MGUS and multiple myeloma at diagnosis based on circulating tumor plasma cells (CTPC). Blood Cancer J. 2018 Dec; 8(12): 117. https://doi.org/10.1038/s41408-018-0153-9
  53. Faict S, et al. Exosomes play a role in multiple myeloma bone disease and tumor development by targeting osteoclasts and osteoblasts. Blood Cancer J. 2018 Nov; 8(11): 105. https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/30409995/ 
  54. He, H et al. Successful treatment of newly diagnosed POEMS syndrome with reduced-dose bortezomib based regimen. British Journal of Haematology, 2018, 181, 122–151. https://onlinelibrary.wiley.com/doi/abs/10.1111/bjh.14497 
  55. Kastritis, E, at al. Evaluation of minimal residual disease using next-generation flow cytometry in patients with AL amyloidosis. Blood Cancer Journal (2018) 8:46. https://europepmc.org/articles/pmc5967299 
  56. Arana, P, at al. Prognostic value of antigen expression in multiple myeloma: a PETHEMA/GEM study on 1265 patients enrolled in four consecutive clinical trials. Leukemia (2018) 32, 971–978. https://www.nature.com/articles/leu2017320 
  57. Mithraprabhu, S, at al. Circulating Tumour DNA Analysis for Tumour Genome Characterisation and Monitoring Disease Burden in Extramedullary Multiple Myeloma. Int. J. Mol. Sci. 2018, 19(7), 1858. http://www.mdpi.com/1422-0067/19/7/1858 
  58. Misiewicz-Krzeminska,I, et al.  A novel nano-immunoassay method for quantification of proteins from CD138-purified myeloma cells: biological and clinical utility. Haematologica 2018 Volume 103(5):880-889. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5927993/ 
  59. Rojas, A, et al. Amiloride, An Old Diuretic Drug, Is a Potential Therapeutic Agent for Multiple Myeloma. Clin Cancer Res; 23(21) November 1, 2017. http://clincancerres.aacrjournals.org/content/23/21/6602.long 
  60. Flores-Montero J, Paiva B, Orfao, A, et al. Next generation flow (NGF) for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia. 2017 Oct;31(10):2094-2103. doi: 10.1038/leu.2017.29. Epub 2017 Jan 20. https://www.nature.com/articles/leu201729
  61. Jelinek, T et al. Current applications of multiparameter flow cytometry in plasma cell disorders. Blood Cancer J. 2017 Oct 20;7(10):e617. doi: 10.1038/bcj.2017.90. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5678219/ 
  62. Mithraprabhu, S, Spencer, A et al. Circulating tumour DNA analysis demonstrates spatial mutational heterogeneity that coincides with disease relapse in myeloma. Leukemia. 2017 Aug;31(8):1695-1705. doi: 10.1038/leu.2016.366. Epub 2016 Nov 30. https://www.ncbi.nlm.nih.gov/pubmed/27899805 
  63. Hillengass, J et al. Whole-body computed tomography versus conventional skeletal survey in patients with multiple myeloma: a study of the International Myeloma Working Group. Blood Cancer J. 2017 Aug 25;7(8):e599. doi: 10.1038/bcj.2017.78. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5596388/
  64. Lahuerta JJ, Paiva B, et al. Depth of response in multiple myeloma: a pooled analysis of 609 patients enrolled in three PETHEMA/GEM clinical trials. J Clin Oncol. 2017 Sep 1;35(25):2900-2910. doi: 10.1200/JCO.2016.69.2517. Epub 2017 May 12.https://ascopubs.org/doi/10.1200/JCO.2016.69.2517
  65. Roshal M, Flores-Montero, JA, et al. MRD detection in multiple myeloma: comparison between MSKCC 10-color single-tube and EuroFlow 8-color 2-tube methods. Blood Advances 2017 1:728-732; doi: https://doi.org/10.1182/bloodadvances.2016003715
  66. Mishima Y, Paiva B, Ghobrial I, et al. The Mutational Landscape of Circulating Tumor Cells in Multiple Myeloma. Cell Rep. 2017 Apr 4;19(1):218-224.  http://www.cell.com/cell-reports/pdf/S2211-1247(17)30357-1.pdf 
  67. Quwaider, D, et al. DEPTOR maintains plasma cell differentiation and favorably affects prognosis in multiple myeloma. J Hematol Oncol. 2017; 10: 92. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5395780/ 
  68. Seckinger, A, et al. Target Expression, Generation, Preclinical Activity, and Pharmacokinetics of the BCMA-T Cell Bispecific Antibody EM801 for Multiple Myeloma Treatment. Cancer Cell 31, 396–410, March 13, 2017. https://www.cell.com/cancer-cell/fulltext/S1535-6108(17)30016-8 
  69. Paiva, B, et al. Differentiation stage of myeloma plasma cells: biological and clinical significance. Leukemia. 2017 February ; 31(2): 382–392. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5439510/ 
  70. Halvarsson B-M, Wihlborg A-K, et al. Direct evidence for a polygenic etiology in familial multiple myeloma. Blood Advances. 2017 1:619-623 http://www.bloodadvances.org/content/1/10/619 
  71. Paiva B, Merino J and San Miguel JF. Utility of flow cytometry studies in the management of patients with multiple myeloma. Curr Opin Oncol 2016, 28:511–517. https://journals.lww.com/co-oncology/Fulltext/2016/11000/Utility_of_flow_cytometry_studies_in_the.9.aspx 
  72. Paiva B, et al. Minimal residual disease monitoring and immune profiling in multiple myeloma in elderly patients. Blood. 2016;127(25):3165-3174.  http://www.bloodjournal.org/content/127/25/3165 
  73. Paiva B, et al. Phenotypic, transcriptomic, and genomic features of clonal plasma cells in light-chain amyloidosis. Blood. 2016;127(24):3035-3039.  http://www.bloodjournal.org/content/bloodjournal/127/24/3035.full.pdf 
  74. Paiva B, et al. Phenotypic and genomic analysis of multiple myeloma minimal residual disease tumor cells: a new model to understand chemoresistance. Blood. 2016;127(15):1896-1906. http://www.bloodjournal.org/content/127/15/1896 
  75. Flores-Montero J, de Tute R, Paiva B, Perez JJ, Bottcher S, Wind H, Sanoja L, Puig N, Lecrevisse Q, Vidriales MB, van Dongen JJM and Orfao A. Immunophenotype of Normal vs. Myeloma Plasma Cells: Toward Antibody Panel Specifications for MRD Detection in Multiple Myeloma. Cytometry Part B 2016; 90B: 61–72. http://onlinelibrary.wiley.com/doi/10.1002/cyto.b.21265/epdf
  76. Pojero F, Flores-Montero J, Sanoja L, Perez JJ, Puig N, Paiva B, Bottcher S, van Dongen JM, and Orfao A on behalf of the Euroflow group. Utility of CD54, CD229, CD319 for the Identification of Plasma Cells in Patients with Clonal Plasma Cell Diseases. Cytometry Part B (Clinical Cytometry) 201690B:91–100. https://onlinelibrary.wiley.com/doi/full/10.1002/cyto.b.21269
  77. Paiva B, van Dongen JM, and Orfao A. New criteria for response assessment: role of minimal residual disease in multiple myeloma. Blood 2015; 125: 3059-3068 http://www.bloodjournal.org/content/bloodjournal/125/20/3059.full.pdf 
  78. Paiva B, Chandia M, Puig N, Vidriales MD, Perez JJ, Lopez-Corral L, Ocio EM, Garcia-Sanz R, Gutierrez NC, Jimenez-Ubieto A, Lahuerta JJ, Mateos MV, and San Miguel JF. The prognostic value of multiparameter flow cytometry minimal residual disease assessment in relapsed multiple myeloma. Haematologica Feb 2015, 100 (2) e53-e55. http://www.haematologica.org/content/100/2/e53.full.pdf 
  79. Matarraz S, Paiva B, Díez-Campelo M, Bárrena S, Jara-Acevedo M, Gutiérrez ML, Sayagués JM, Sánchez ML, Bárcena P, Garrastazul MP, Berruezo MJ, Duran JM, Cerveró C, García-Erce JA, Florensa L, Méndez GD, Gutierrez O, Del Cañizo MC, van Dongen JJ, San Miguel JF, Orfao A. Immunophenotypic alterations of bone marrow myeloid cell compartments in multiple myeloma patientspredict for myelodysplasia-associated cytogenetic alterations. Leukemia. 2014 Aug;28(8):1747-50. http://www.nature.com/leu/journal/v28/n8/full/leu2014103a.html
  80. Matarraz S, et al. Myelodysplasia-associated immunophenotypic alterations of bone marrow cells in myeloma: are they present at diagnosis or are they induced by lenalidomide? Haematologica October 2012 97: 1608-1611 http://www.haematologica.org/content/97/10/1608 

Abstracts

  1. Long T E, Rögnvaldsson S, Thorsteinsdottir S, et al. Revised Definition of Free Light Chains in Serum and Light Chain Monoclonal Gammopathy of Undetermined Significance: Results of the iStopMM Study. Blood 2023; 142 (suppl 1): 535. https://doi.org/10.1182/blood-2023-188547 
  2. Rögnvaldsson S, Thorsteinsdottir S, Óskarsson JÞ, et al. The Early Benefits and Psychological Effects of Screening for Monoclonal Gammopathy of Undetermined Significance: Results of the Istopmm Study. Blood 2023; 142 (suppl 1): 214. https://doi.org/10.1182/blood-2023-186397 
  3. Thorsteinsdottir S, Sverrisdottir I, Rögnvaldsson S, et al. Risk Factors of Smoldering Multiple Myeloma: Results from the Screened iStopMM Study. Blood 2023; 142 (suppl 1): 3397. https://doi.org/10.1182/blood-2023-188469
  4. Óskarsson JÞ, Rögnvaldsson S, Thorsteinsdottir S, et al. Predicting an Underlying Clonal Plasma Cell Population in Light-Chain Monoclonal Gammopathy of Undetermined Significance Using Free Light-Chain Ratio. Blood 2023; 142 (suppl 1): 530. https://doi.org/10.1182/blood-2023-182661
  5. Palmason R, Ekberg S, Eythorsson E, et al. Sars-Cov-2 Infection Does Not Lead to Progression of Monoclonal Gammopathy of Undetermined Significance: Results from the Population-Based Istopmm Screening Study. Blood 2023; 142 (suppl 1): 4766. https://doi.org/10.1182/blood-2023-173078 
  6. Rögnvaldsson S, Gasparini A, Thorsteinsdottir S, et al. Monoclonal Gammopathy of Undetermined Significance and the Risk of Thrombotic Events: Results from Istopmm, a Population-Based Screening Study in Iceland. Blood 2023; 142 (suppl 1): 216–218 https://doi.org/10.1182/blood-2023-186098 
  7. Long T E, Eythorsson E, Rögnvaldsson S, et al. Monoclonal Gammopathy of Undetermined Significance and Risk of Chronic Kidney Disease: Results of the Population-Based Iceland Screens, Treats, or Prevents Multiple Myeloma (iStopMM) Study. Blood 2022; 140 (suppl 1): 10108–10109. https://doi.org/10.1182/blood-2022-170623 
  8. Sverrisdottir I S, Thorsteinsdóttir S, Rögnvaldsson S, et al. Autoimmune Diseases Are Not Associated with Monoclonal Gammopathy of Undetermined Significance: Results of the Prospective Population-Based iStopMM Study. Blood 2022; 140 (suppl 1): 10031–10032. https://doi.org/10.1182/blood-2022-169393 
  9. Kristinsson S Y, Rögnvaldsson S, Thorsteinsdóttir S, et al. Screening for Monoclonal Gammopathy of Undetermined Significance: A Population-Based Randomized Clinical Trial. First Results from the Iceland Screens, Treats, or Prevents Multiple Myeloma (iStopMM) Study. Blood 2022; 138 (suppl 1): 156. https://doi.org/10.1182/blood-2021-152333 
  10. Long T E, Indridason O S, Palsson R, et al. Defining New Reference Intervals for Serum Free Light Chains in Individuals with Reduced Kidney Function: Results of the Population- Based on Iceland Screens Treats or Prevents Multiple Myeloma (iStopMM) Study. Blood 2022; 138 (suppl 1): 542. https://doi.org/10.1182/blood-2021-153827
  11. Óskarsson J D, Petursdottir I, Rögnvaldsson S, et al. Monitoring of Circulating Tumor Plasma Cells in Patients with Precursor Conditions of Multiple Myeloma: Data from the Prospective Iceland Screens, Treats, or Prevents Multiple Myeloma (iStopMM) Study. Blood 2021; 138 (suppl 1): 2645. https://doi.org/10.1182/blood-2021-146363
  12. Jiménez-Ubieto A, Paiva B, Puig N, et al. Validation of the International Myeloma Working Group standard response criteria in the PETHEMA/GEM2012MENOS65 study: are these times of change? [published correction appears in Blood. 2023 Aug 17;142(7):676]. Blood. 2021;138(19):1901-1905. https://doi.org/10.1182/blood.2021012319
  13. Alameda D, Goicoechea I, Vicari M, et al. Tumor cells in light-chain amyloidosis and myeloma show distinct transcriptional rewiring of normal plasma cell development. Blood. 2021;138(17):1583-1589. https://doi.org/10.1182/blood.2020009754
  14. Rögnvaldsson S, Eythorsson E, Thorsteinsdóttir S, et al. Monoclonal Gammopathy of Undetermined Significance and COVID-19: Results from the Population-Based Iceland Screens Treats or Prevents Multiple Myeloma Study (iStopMM). Blood 2021; 138 (suppl 1): 154. https://doi.org/10.1182/blood-2021-153145
  15. Sigurbergsdóttir A Ý, Rögnvaldsson S, Thorsteinsdóttir S, et al. Estimating Selection Bias in Previous Monoclonal Gammopathy of Undetermined Significance Research - the Importance of Screening: Results from the Population-Based Screening Study Iceland Screens, Treats or Prevents Multiple Myeloma (iStopMM). Blood 2021; 138 (suppl 1): 1618. https://doi.org/10.1182/blood-2021-153188
  16. Thorsteinsdóttir S, Gislason G K, Aspelund T, et al. Prevalence of Smoldering Multiple Myeloma: Results from the Iceland Screens, Treats, or Prevents Multiple Myeloma (iStopMM) Study. Blood 2021; 138 (suppl 1): 151. https://doi.org/10.1182/blood-2021-148617 
  17. Goicoechea I, Puig N, Cedena MT, et al. Deep MRD profiling defines outcome and unveils different modes of treatment resistance in standard- and high-risk myeloma. Blood. 2021;137(1):49-60. https://doi.org/10.1182/blood.2020006731
  18. Perez C, Botta C, Zabaleta A, et al. Immunogenomic identification and characterization of granulocytic myeloid-derived suppressor cells in multiple myeloma. Blood 2020; 136 (2): 199–209. doi: https://doi.org/10.1182/blood.2019004537
  19. Maia C, Puig N, Cedena MT, et al. Biological and clinical significance of dysplastic hematopoiesis in patients with newly diagnosed multiple myeloma. Blood 2020; 135 (26): 2375–2387. https://doi.org/10.1182/blood.2019003382 
  20. Mateos M V, Martinez-Lopez J, Otero P R, et al. Curative Strategy (GEM-CESAR) for High-Risk Smoldering Myeloma (SMM): Carfilzomib, Lenalidomide and Dexamethasone (KRd) As Induction Followed By HDT-ASCT, Consolidation with Krd and Maintenance with Rd. Blood 2019; 134 (suppl 1): 781. https://doi.org/10.1182/blood-2019-125204
  21. Puig, N, et al. Analysis of treatment efficacy in the GEM-CESAR trial for high-risk smoldering multiple myeloma patients: Comparison between the standard and IMWG MRD criteria and QIP-MS including FLC (QIP-FLC-MS)https://ascopubs.org/doi/10.1200/JCO.2020.38.15_suppl.8512
  22. Mateos MV, et al. Curative Strategy  for High-Risk Smoldering Myeloma (GEM-CESAR): Carfilzomib, Lenalidomide and Dexamethasone (KRd) As Induction Followed By HDT-ASCT, Consolidation with Krd and Maintenance with Rd https://ascopubs.org/doi/10.1200/JCO.23.02771
  23. Sanoja-Flores Luzalba, Flores-Montero Juan, and Orfao Alberto1 on behalf of the EuroFlow Consortium and the International Myeloma Foundation.  Frequency and number of clonal plasma cells in peripheral blood (PB) in plasma cell neoplasm (PCN) by Next Generation Flow. XV Congress of Iberican Society of Cytometry. May 2017.  (poster presentation) https://www.nature.com/articles/s41408-018-0153-9
  24. Misiewicz-Krzeminska I, et al. Quantification of proteins from CD138-purified myeloma cells using the capillary nano-immunoassay technology is a better predictor of survival than the corresponding gene expression value. 16th International Myeloma Workshop, March 1-4, 2017. DOI: 10.1016/j.clml.2017.03.008 
  25. Paiva B, Cedena M T, Puig N, et al. Minimal residual disease monitoring and immune profiling in multiple myeloma in elderly patients. Blood. 2016; 127(25): 3165-3174. https://doi.org/10.1182/blood-2016-03-705319. PMID: 27118453
  26. Paiva B, Martinez-Lopez J, Corchete L A, et al. Phenotypic, transcriptomic, and genomic features of clonal plasma cells in light-chain amyloidosis. Blood. 2016; 127(24): 3035-3039. https://doi.org/10.1182/blood-2015-10-673095
  27. Paiva B, Corchete LA, Vidriales MB, et al. Phenotypic and genomic analysis of multiple myeloma minimal residual disease tumor cells: a new model to understand chemoresistance. Blood. 2016; 127(15): 1896-1906. https://doi.org/10.1182/blood-2015-08-665679
  28. Paiva B, van Dongen J J, Orfao A. New criteria for response assessment: role of minimal residual disease in multiple myeloma. Blood. 2015; 125(20): 3059-3068 https://doi.org/10.1182/blood-2014-11-568907   
  29. Hillengass, J et al. Findings of Whole Body Computed Tomography Compared to Conventional Skeletal Survey in Patients with Monoclonal Plasma Cell Disorders - a Study of the International Myeloma Working Group. Blood 2016 128:4468. http://www.bloodjournal.org/content/128/22/4468
  30. Spencer A, Mithraprabhu S, Ramachandran M, Klarica D, Hocking J, Mai L, Walsh S, Broemeling D, Marziali A, Kalff A, Wiggin M, Durie BGM, and Khong TT. Evaluation of Circulating Tumour DNA for the Mutational Characterisation of Multiple Myeloma. Blood 2015 126:368. http://www.bloodjournal.org/content/126/23/368
  31. Misiewicz-Krzeminska I, et al. Quantification of Cyclin D1, Cyclin D2, Ikaros, Aiolos, and Cerebelon Proteins by Capilary Immunoassay in Patients with Newly Diagnosed Multiple Myeloma and Analysis of their Impact on Patient Survival. EHA21 Abstract Book (2016).  http://learningcenter.ehaweb.org/eha/2016/21st/133252/irena.misiewicz-krzeminska.quantification.of.cyclin.d1.cyclin.d2.ikaros.aiolos.html?f=p6m3e968o12153
  32. Kubiczkova-Besse L, Drandi D, Sedlarikova L, Oliva S,  Gambella M, Omedè P, Adam Z, Pour L, Sevcikova S, Boccadoro M, Palumbo A, Hajek R. Cell-Free DNA for Minimal Residual Disease Monitoring in Multiple Myeloma Patients. Blood 2014 124:3423  http://www.bloodjournal.org/content/124/21/3423

Presentations

  1. iStopMM - A Nationwide Screening Study of MGUS
    2017 ASH Conference – Friday, December 8, 2017, 3:45 PM-5:05 PM
    Sigurður Yngvi Kristinsson, MD, PhD
    Faculty of Medicine, University of Iceland, Reykjavik, Iceland

 

 

Give Where Most Needed