Are We Ready for Personalized Therapy in Newly Diagnosed MM?

Faculty Presenter:
Brian G.M. Durie, MD

This activity is supported by educational grants from AbbVie; Amgen; Bristol-Myers Squibb; Celgene Corporation; Janssen Biotech, Inc., administered by Janssen Scientific Affairs, LLC; and Takeda Oncology.

Image: Copyright©2018 DNA Illustrations. All Rights Reserved
Faculty Presenter

Brian G.M. Durie, MD
Medical Director, AMyC
Co-Chair Myeloma Committee, SWOG
Chairman, International Myeloma Foundation
Specialist in Multiple Myeloma and Related Disorders
Cedars-Sinai Outpatient Cancer Center
Los Angeles, California

Brian G.M. Durie, MD, has disclosed that he has received consulting fees from Amgen, Celgene, Johnson & Johnson, and Takeda.
Patient Case Example

- A 55-year-old woman presented with bone pain and a whole-body low-dose CT scan showed multiple lytic lesions

- Additional testing revealed:
 - SPEP plus IFE revealed IgAk of 4.6 g/dL
 - Hemoglobin of 10.4 g/dL; WBC and platelets normal
 - Calcium and creatinine normal
 - Bone marrow shows 41% plasma cells
 - FISH testing shows trisomies of 3, 5, 9 and 15
 - Serum free light chain ratio (sFLC: involved/uninvolved) is 157
What treatment would you recommend for this patient?

<table>
<thead>
<tr>
<th>Faculty</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brian G.M. Durie, MD</td>
<td>Bortezomib/lenalidomide/dexamethasone (VRd)</td>
</tr>
<tr>
<td>Shaji Kumar, MD</td>
<td>Bortezomib/lenalidomide/dexamethasone (VRd)</td>
</tr>
<tr>
<td>Philippe Moreau, MD</td>
<td>Bortezomib/lenalidomide/dexamethasone (VRd)</td>
</tr>
<tr>
<td>S. Vincent Rajkumar, MD</td>
<td>Bortezomib/lenalidomide/dexamethasone (VRd)</td>
</tr>
<tr>
<td>Jesús F. San-Miguel, MD, PhD</td>
<td>Bortezomib/lenalidomide/dexamethasone (VRd)</td>
</tr>
</tbody>
</table>
Frontline Treatment of Myeloma

Newly Diagnosed MM*

Not Transplant Candidate
- VRd §
- Rd (frail, age ≥ 75)*

Transplant Candidate
- VRd § x 3-4 cycles
- AutoSCT
 Maintenance
 (Len for std risk; Bortez for high risk)

VRd x 4 cycles Maintenance
Delayed ASCT

*Based on CALGB 100104, S0777, IFM-DFCI, CTN 0702 HOVON
§VTd/VCd if VRd not available

Rajkumar SV. 2016.
Induction Regimens for Patients Eligible for ASCT

![Graph showing response rates for different induction regimens. The regimens include VCD and VTd, with response rates indicated for both OR (OR) and ≥VGPR (≥VGPR). The graph compares various regimens such as VAD, Dex, CTD, Thal-Dex, VCD, Len-Dex, VTD, VRDC, RVD, and CRd.]
Treatment-naive MM without intent for immediate ASCT* (N = 525)

Stratifications: ISS; intent to transplant at progression

VRd†: Bortezomib Lenalidomide Dexamethasone (n = 264)
Eight 21-day cycles

Rd

Rd: Lenalidomide Dexamethasone (n = 261)
Six 28-day cycles

Len: 25 mg PO Until progression

Primary endpoint: PFS

*All patients received aspirin (325 mg/d). †Patients received HSV prophylaxis.
‡High-risk cytogenetics included: t(4;14), t(14;16), or del(17p); preliminary data from 316 patients.

SWOG 0777 Trial

Updated Response Results*

<table>
<thead>
<tr>
<th></th>
<th>VRd (n = 215)</th>
<th>Rd (n = 207)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete response (CR)</td>
<td>24.2% (52)</td>
<td>12.1% (25)</td>
</tr>
<tr>
<td>Very good partial response (VGPR)</td>
<td>50.7% (109)</td>
<td>41.1% (85)</td>
</tr>
<tr>
<td>VGPR or better</td>
<td>74.9%</td>
<td>53.2%</td>
</tr>
<tr>
<td>Partial response (PR)</td>
<td>15.3% (33)</td>
<td>25.6% (53)</td>
</tr>
<tr>
<td>Overall Response Rate (ORR)</td>
<td>90.2% (194)</td>
<td>78.8% (163)</td>
</tr>
<tr>
<td>Stable disease (SD)</td>
<td>7.0% (15)</td>
<td>16.4% (34)</td>
</tr>
<tr>
<td>PD or death</td>
<td>2.8% (6)</td>
<td>4.8% (10)</td>
</tr>
</tbody>
</table>

*Both SWOG and IRC stratified Cochran-Mantel-Haenszel analyses indicated improved responses with RVd (odds ratio: 0.528, \(P = .006 \) [ITT]; odds ratio: 0.38, \(P = .001 \) [sensitivity analysis])

Both SWOG and IRC assessments

SWOG 0777: Progression-Free Survival

CURRENT ELIGIBILITY (N = 460) – CURRENT DATA

- **PFS**
 -
 - Median in Months
 - **Rd**: 185 / 225, 29 (24, 37)
 - **VRd**: 167 / 235, 41 (33, 51)
 - *P-value = 0.003*

SWOG 0777: Overall Survival

CURRENT ELIGIBILITY (N = 460) – CURRENT DATA

VRd: 55% OS at 7 years

*P-value = 0.0114

Months from Registration

Deaths / N in Months
- Rd: 125 / 225, Median: 69 (59, 88)
- VRd: 102 / 235, NR

NR102 / 235 VRd

SWOG 0777: OS Landmarked at 12 Months (N = 357)

Multivariate COX Proportional Hazards Model

VRd Irrespective of Age

<table>
<thead>
<tr>
<th>Variable</th>
<th>n/N (%)</th>
<th>PFS</th>
<th>OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>RVd arm</td>
<td>235/460 (51%)</td>
<td>HR (0.77 (0.62, 0.95), 0.013</td>
<td>HR (0.75 (0.58, 0.98), 0.033)</td>
</tr>
<tr>
<td>ISS Stage III</td>
<td>155/460 (34%)</td>
<td>1.34 (1.01, 1.77), 0.041</td>
<td>1.98 (1.38, 2.86), <.001</td>
</tr>
<tr>
<td>ISS Stage II</td>
<td>179/460 (39%)</td>
<td>1.12 (0.86, 1.47), 0.398</td>
<td>1.36 (0.95, 1.97), 0.096</td>
</tr>
<tr>
<td>Intent to Transplant</td>
<td>315/460 (68%)</td>
<td>0.95 (0.74, 1.23), 0.714</td>
<td>0.73 (0.54, 0.99), 0.043</td>
</tr>
<tr>
<td>Age >= 65 yr</td>
<td>197/460 (43%)</td>
<td>1.27 (1.00, 1.61), 0.048</td>
<td>1.63 (1.21, 2.19), 0.001</td>
</tr>
</tbody>
</table>

HR- Hazard Ratio, 95% CI- 95% Confidence Interval, P-value from Score Chi-Square Test in Cox Regression
In 2018/2019:

Achievement of MRD undetected status at 10^{-6} is the goal of therapy.
True value of CR comes from the MRD status

MRD- vs CR: $P < .001$

- **CR vs nCR:** $P = .616$
- **nCR vs PR:** $P = .962$
- **PR vs <PR:** $P < .001$

CR MRD negative

- **MRD- vs CR:** $P < .001$
- **CR vs nCR:** $P = .594$
- **nCR vs PR:** $P = .912$
- **PR vs <PR:** $P = .024$

MRD approved by FDA and EMA as surrogate endpoint for myeloma

Trials included:
- IFM 2009
- EMN/Hovon
- MM05 [Heidelberg]
- STAMINA
- MRC
- Clarion
- CASTOR/POLLUX
- C16010
- IXA maintenance: C16019

FDA meeting December 11th, 2018
Patient Case Example

- A **76-year-old woman** presented with bone pain and a whole-body low-dose CT scan showed multiple lytic lesions.

- Additional testing revealed:
 - SPEP plus IFE revealed IgAk: 4.6 g/dL
 - Hemoglobin: 10.4 g/dL; WBC and platelets normal
 - Calcium and creatinine normal
 - Bone marrow shows 41% plasma cells
 - FISH testing shows trisomies of 3, 5, 9 and 15
 - Serum free light chain ratio (sFLC: involved/uninvolved) is 157
What treatment would you recommend for this patient?

<table>
<thead>
<tr>
<th>Faculty</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brian G.M. Durie, MD</td>
<td>Bortezomib/lenalidomide/dexamethasone (VRd), full dose or “lite”</td>
</tr>
<tr>
<td>Shaji Kumar, MD</td>
<td>Bortezomib/lenalidomide/dexamethasone (VRd), full dose or “lite”</td>
</tr>
<tr>
<td>Philippe Moreau, MD</td>
<td>Bortezomib/lenalidomide/dexamethasone (VRd), full dose or “lite”</td>
</tr>
<tr>
<td>S. Vincent Rajkumar, MD</td>
<td>Bortezomib/lenalidomide/dexamethasone (VRd), full dose or “lite”</td>
</tr>
<tr>
<td>Jesús F. San-Miguel, MD, PhD</td>
<td>Daratumumab/lenalidomide/dexamethasone</td>
</tr>
</tbody>
</table>
Non-Transplant Candidate: Off-Study

- **t(11;14), t(6;14), Trisomies**
 - VRd for ~12 months;
 - If frail: Rd*
 - Rd for at least 1 year*, §

- **t(4;14), t(14;16), t(14;20), del(17p)**
 - VRd for ~12 months
 - Bortezomib-based maintenance until progression¶

*In patients treated initially with Rd, continuing treatment until progression is an options for patients responding well with low toxicities

§ Dex is usually discontinued after first year

¶Duration based on tolerance; consider risks and benefits for treatment beyond 3 years

ALCYONE Study Design

VMP × 9 cycles (n = 356)
- **Bortezomib**: 1.3 mg/m² SC
 - Cycle 1: twice weekly
 - Cycles 2-9: once weekly
- **Melphalan**: 9 mg/m² PO on Days 1-4
- **Prednisone**: 60 mg/m² PO on Days 1-4

D-VMP × 9 cycles (n = 350)
- **Daratumumab**: 10 mg/kg IV
 - Cycle 1: once weekly
 - Cycles 2-9: every 3 weeks
- **Same VMP schedule**

D Cycles 10+
- **16 mg/kg IV**
 - Every 4 weeks: until PD

Key eligibility criteria:
- Transplant-ineligible NDMM
- ECOG 0-2
- Creatinine clearance ≥40 mL/min
- No peripheral neuropathy grade ≥2

Stratification factors
- ISS (I vs II vs III)
- Region (EU vs other)
- Age (≤75 vs ≥75 years)

Primary endpoint:
- PFS

Secondary endpoints:
- ORR
- ≥VGPR rate
- ≥CR rate
- MRD (NGS; 10⁻⁶)
- OS
- Safety

Follow-up for PD and survival

Statistical analyses
- 360 PFS events: 85% power for 8-month PFS improvement
- Interim analysis: ~216 PFS events

Mateos. NEJM. 2018; 378:518.
Efficacy: PFS

HR, 0.50
(95% CI, 0.38-0.65; P < 0.0001)

Median follow-up: 16.5 months
(range: 0.1-28.1)

Consistent PFS treatment benefit across subgroups

50% reduction in the risk of progression or death in patients receiving D-VMP

Mateos. NEJM. 2018; 378:518.
Efficacy: ORR and MRD (NGS; 10^{-5} Threshold)

VMP (n = 356)	D-VMP (n = 350)
PR | 24 | 20
VGPR | 25 | 29
CR | 7 | 18
sCR | 17 | 25

ORR
- VMP: 74%
- D-VMP: 91%

MRD-negativity rate
- VMP: 22%
- D-VMP: 6%

Significantly higher ORR, ≥VGPR, and ≥CR with D-VMP
>3-fold higher MRD-negativity rate with D-VMP

Mateos. NEJM. 2018; 378:518.
Updates at ASH 2018

• LBA-2 Phase 3 dara/len/dex (dara Rd) versus len/dex (Rd)
 ➢ NDMM not eligible for transplant
Patient Case Example

- A 55-year-old woman presented with bone pain and a whole-body low-dose CT scan showed multiple lytic lesions.

- Additional testing revealed:
 - SPEP plus IFE revealed IgAk: 4.6 g/dL
 - Hemoglobin: 10.4 g/dL; WBC and platelets normal
 - Calcium and creatinine normal
 - Bone marrow shows 41% plasma cells
 - **FISH testing 1q+, 17p- and t(14;16)**
 - Serum free light chain ratio (SFLC: involved/uninvolved) is 157
What treatment would you recommend for this patient?

<table>
<thead>
<tr>
<th>Faculty</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brian G.M. Durie, MD</td>
<td>Carfilzomib/lenalidomide/dexamethasone (KRd)</td>
</tr>
<tr>
<td>Shaji Kumar, MD</td>
<td>Carfilzomib/lenalidomide/dexamethasone (KRd)</td>
</tr>
<tr>
<td>Philippe Moreau, MD</td>
<td>Bortezomib/lenalidomide/dexamethasone (VRd)</td>
</tr>
<tr>
<td>S. Vincent Rajkumar, MD</td>
<td>Carfilzomib/lenalidomide/dexamethasone (KRd)</td>
</tr>
<tr>
<td>Jesús F. San-Miguel, MD, PhD</td>
<td>Carfilzomib/lenalidomide/dexamethasone (KRd)</td>
</tr>
</tbody>
</table>
Controversies in 2018/2019

Triplets:
- KRd/KCd/KTd
- Dara-Rd or Vd or Cyd or Td
- IxaRd/IxaCyD/IxaTd (also combos with elotuzumab or pomalidomide if feasible)

Four-drug combos:
- Dara Rd + K or Ixa triplets
- Globally, Dara + VRd/VTd/VCd or VMP
Only 6/225 (3%) Relapses With VRd + ASCT (Spanish)

<table>
<thead>
<tr>
<th>Patient</th>
<th>359</th>
<th>454</th>
<th>502</th>
<th>635</th>
<th>751</th>
<th>767</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISS</td>
<td>III</td>
<td>III</td>
<td>I</td>
<td>III</td>
<td>I</td>
<td>I</td>
</tr>
<tr>
<td>FISH</td>
<td>1q+(59%)</td>
<td>del17p(22%)</td>
<td>1q+(50%) & 1p-(61%)</td>
<td>1q+(85%) & 1p-(89%)</td>
<td>NE</td>
<td>-</td>
</tr>
<tr>
<td>Bone-related plasmacytomas</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>NE</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Relapse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M-protein</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>BMPCs (%)</td>
<td>4</td>
<td>3</td>
<td>46</td>
<td>1</td>
<td>58</td>
<td>4</td>
</tr>
<tr>
<td>Clonal PCs (%)</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Bone-related plasmacytomas</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>NE</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

Note: “Double hit” myeloma
- Double loss/mutation of p53 [17p-]
- ≥ 4 copies 1q21 [CKS1B]
Subclonal Mutational Patterns for 1q+

Single-cell exomes in an index case of amp1q21 multiple myeloma reveal more diverse mutanomes than the whole population

- RAS genes most frequently “co-mutated”
 - NRAS 19%
 - KRAS 16%
- 21 variant subclones
- 5 driver genes
 - ANK 3: ANKRIN membrane protein
 - AXIN 1: Wnt/β-catenin signaling
 - BRCA2: DNA repair
 - MAP4K3: cell signaling/c-Jun
 - Tripio: stat3 interacting

Increasing subclonal heterogeneity strongly supports early intervention

Pillars of Myeloma Therapy

- **Proteasome Inhibitors**
 - Bortezomib
 - Carfilzomib
 - Ixazomib

- **Immunomodulatory**
 - Thalidomide
 - Lenalidomide
 - Pomalidomide

- **Novel Immune Drugs**
 - Steroids
 - Elotuzumab

- **Monoclonal Antibodies**
 - Daratumumab
 - Elotuzumab
 - Isatuximab

- **Alkylators**
 - Melphalan, Cyclophosphamide

- **Other Conventional Chemo**
 - Bendamustine, DPACE...

- **Venetoclax**

- **Selinexor**

- **CAR T Cell Therapy?**
New Agents in Frontline Setting

- Daratumumab (or isatuximab): Add to create 4-drug combo?
- Venetoclax (or Mcl-1 inhibitions): Add if t(11;14) present?
- CAR T or BiTEs: Consider adding early in high risk and/or with suboptimal response?
PFS at Inactive (50 × 10^6) and Active (150–800 × 10^6) Dose Levels

- mPFS = 2.7 mo
- mPFS = 11.8 mo

Can CAR T Therapy Be Introduced Early?

- Can consider harvesting T-cells early!

- Potential of great efficiency **BUT** concerns about both short term and long-term toxicities.
Need New Response Criteria to Encompass Very Rapid Responses

• MRD assessment at 1, 3, 6 and 12 months

• Consider adding mass spec for M-component monitoring

• Define “sustained response” as endpoint
The Future of Myeloma Therapy

- **MGUS**
 - Low risk MGUS

- **HR SMM**
 - Low risk SMM
 - New HR SMM
 - 2/20/20
 - MDE

- **MM**
 - Ultra high risk
 - CRAB

- Monitor
- Treat as MM
Future of Myeloma Therapy in 2019 and Beyond

- **MGUS**
 - Low risk MGUS

- **SMM**
 - Low risk SMM
 - New HR SMM
 - 2/20/20

- **MM**
 - Standard or high risk
 - Ultra HR SMM
 - MM

- **Treat as MM**
 - Monitor
 - MDE
 - CRAB
Go Online for More Educational Programs on Myeloma!

On-demand Webcast of this symposium, including expert faculty commentary (IMF link below)

Downloadable slides from this symposium (IMF link below)

Interactive Decision Support Tool for myeloma, with personalized expert recommendations for your patients with myeloma

Online programs on caring for your patients with myeloma

clinicaloptions.com/MyelomaTool

clinicaloptions.com/oncology/topics/Multiple-Myeloma