PANORAMA 1:
A Randomized, Double-Blind, Phase 3 Study of Panobinostat or Placebo Plus Bortezomib and Dexamethasone in Relapsed or Relapsed and Refractory Multiple Myeloma

Panobinostat ~ a Pan-Deacetylase Inhibitor: Introduction

- Panobinostat (PAN) is a potent, oral pan-DACi that increases acetylation of proteins involved in multiple oncogenic pathways.
- PAN was synergistic with bortezomib (BTZ) and dexamethasone (Dex) in preclinical studies of MM.
- In phase 1 and 2 studies, PAN-BTZ-Dex demonstrated durable responses in relapsed or relapsed and refractory MM, including BTZ-refractory disease.

Panobinostat: Relative Potency of Pan-DACi Evaluated as Treatment for MM

Potency Profiles of DACi IC\textsubscript{50} of Enzyme Inhibition [nM]

<table>
<thead>
<tr>
<th></th>
<th>Class I Histone, Transcription Factors</th>
<th>Class II Chaperones, Tubulin</th>
<th>Class IV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HDAC 1</td>
<td>HDAC 2</td>
<td>HDAC 3</td>
</tr>
<tr>
<td>Panobinostat1</td>
<td>2.5</td>
<td>13.2</td>
<td>2.1</td>
</tr>
<tr>
<td>Vorinostat1</td>
<td>75.5</td>
<td>362</td>
<td>57.4</td>
</tr>
<tr>
<td>Romidepsin2</td>
<td>7</td>
<td>28</td>
<td>103</td>
</tr>
<tr>
<td>ACY-12153</td>
<td>58</td>
<td>48</td>
<td>51</td>
</tr>
</tbody>
</table>

Implicated as potential tumor targets in MM

- DACi demonstrate differential inhibitory activity towards HDAC enzymes
- Panobinostat demonstrates low nanomolar activity against class I, II, and IV HDAC enzymes
 - HDAC6 has been implicated as an important target in MM 4

Panobinostat + Bortezomib
Dual Inhibition of Protein Degradation Pathways

PANORAMA 1 Study Design
Randomized, Double-Blind, Phase 3 Study in Relapsed or Relapsed and Refractory MM

Study Design

Randomized, Double-Blind, Phase 3 Study in Relapsed or Relapsed and Refractory MM

Follow-up

Treatment Phase 1
- Eight 21d cycles (24 wks)
- Panobinostat + bortezomib + dexamethasone
- Placebo + bortezomib + dexamethasone

Treatment Phase 2
- Four 42d cycles (24 wks)
- Panobinostat + bortezomib + dexamethasone
- Placebo + bortezomib + dexamethasone

Pts with clinical benefit \(^a\) in Treatment Phase I can proceed to Treatment Phase II

- **Pts (N = 768)**
 - Rel or Rel/Ref MM (BTZ-ref excluded)
 - 1-3 prior lines of therapy
 - Stratification factors
 - Prior lines of therapy
 - Prior BTZ

- **Primary endpoint:** PFS (per modified EBMT criteria; confirmed by IRC)\(^1\,^2\)
- **Key secondary endpoint:** OS
- **Other secondary endpoints:** ORR, nCR/CR rate, DOR, TTR, TTP, QoL, and safety

Study conducted at 215 centers across 34 countries

\(^a\) Achieving \(\geq\) no change according to modified EBMT criteria (SD or better)

PANORAMA 1 Treatment Schedule

Treatment Phase 1 (Cycles 1-8)

<table>
<thead>
<tr>
<th>Week 1</th>
<th>Week 2</th>
<th>Week 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAN/Pbo</td>
<td>BTZ</td>
<td>Dex</td>
</tr>
</tbody>
</table>

- **PAN/Pbo**: Panobinostat 20 mg oral
- **BTZ**: Bortezomib 1.3 mg/m² IV
- **Dex**: Dexamethasone 20 mg oral

Treatment Phase 2 (Cycle 9-12)

<table>
<thead>
<tr>
<th>Week 1</th>
<th>Week 2</th>
<th>Week 3</th>
<th>Week 4</th>
<th>Week 5</th>
<th>Week 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAN/Pbo</td>
<td>BTZ</td>
<td>Dex</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **PAN/Pbo**: Panobinostat 20 mg oral
- **BTZ**: Bortezomib 1.3 mg/m² IV
- **Dex**: Dexamethasone 20 mg oral
Patient Characteristics and Baseline Demographics

<table>
<thead>
<tr>
<th></th>
<th>PAN-BTZ-Dex (n = 387)</th>
<th>Pbo-BTZ-Dex (n = 381)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age Median (years)</td>
<td>63.0</td>
<td>63.0</td>
</tr>
<tr>
<td>Time from diagnosis Median (months)</td>
<td>37.1</td>
<td>38.9</td>
</tr>
<tr>
<td>ISS clinical stage (%)</td>
<td>Stage I/II/III</td>
<td>40.3/ 26.9/ 19.9</td>
</tr>
<tr>
<td>MM category (%)</td>
<td>Relapsed</td>
<td>63.8</td>
</tr>
<tr>
<td></td>
<td>Relapsed and refractory</td>
<td>34.6</td>
</tr>
<tr>
<td>Prior ASCT (%)</td>
<td>55.6</td>
<td>58.8</td>
</tr>
<tr>
<td>Prior lines of therapy Median (range)</td>
<td>1 (1-4)</td>
<td>1 (1-3)</td>
</tr>
<tr>
<td>Prior therapies, n (%)</td>
<td>Bortezomib</td>
<td>43.7</td>
</tr>
<tr>
<td></td>
<td>Lenalidomide</td>
<td>18.6</td>
</tr>
<tr>
<td></td>
<td>Thalidomide</td>
<td>53.0</td>
</tr>
<tr>
<td></td>
<td>Bortezomib and IMiD</td>
<td>24.3</td>
</tr>
</tbody>
</table>

- Nearly half (48.4%) received ≥ 2 prior regimens/lines of therapy
PANORAMA 1

Patient Disposition (Cut-off Date, 10 Sep 2013)

<table>
<thead>
<tr>
<th>Patients treated</th>
<th>PAN-BTZ-Dex n = 387</th>
<th>Pbo-BTZ-Dex n = 381</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment completed or discontinued</td>
<td>382 (98.7)</td>
<td>376 (98.7)</td>
</tr>
<tr>
<td>Pts entered treatment phase 2</td>
<td>169 (43.7)</td>
<td>192 (50.4)</td>
</tr>
</tbody>
</table>

Primary reasons for end of treatment (>5%)

<table>
<thead>
<tr>
<th>Reason</th>
<th>PAN-BTZ-Dex n (%)</th>
<th>Pbo-BTZ-Dex n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease progression</td>
<td>82 (21.2)</td>
<td>153 (40.2)</td>
</tr>
<tr>
<td>Death</td>
<td>21 (5.4)</td>
<td>17 (4.5)</td>
</tr>
<tr>
<td>Adverse event(s)</td>
<td>130 (33.6)</td>
<td>66 (17.3)</td>
</tr>
<tr>
<td>Subject withdrew consent</td>
<td>34 (8.8)</td>
<td>18 (4.7)</td>
</tr>
<tr>
<td>Treatment duration completed</td>
<td>102 (26.4)</td>
<td>102 (26.8)</td>
</tr>
</tbody>
</table>

Follow-up

<table>
<thead>
<tr>
<th>Follow-up</th>
<th>PAN-BTZ-Dex</th>
<th>Pbo-BTZ-Dex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median duration of follow-up, wks</td>
<td>125</td>
<td>126.3</td>
</tr>
<tr>
<td>Pts continuing post-treatment evaluation</td>
<td>41 (10.7)</td>
<td>17 (4.5)</td>
</tr>
</tbody>
</table>
PANORAMA 1

Dose Intensity

<table>
<thead>
<tr>
<th></th>
<th>PAN-BTZ-Dex</th>
<th>Pbo-BTZ-Dex</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>387</td>
<td>381</td>
</tr>
<tr>
<td>PAN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative dose intensity, %</td>
<td>Median (range)</td>
<td>Median (range)</td>
</tr>
<tr>
<td></td>
<td>80.7 (41-104)</td>
<td>86.7 (31-105)</td>
</tr>
<tr>
<td>BTZ</td>
<td>75.7 (31-106)</td>
<td>95.1 (45-250)</td>
</tr>
<tr>
<td>Dex</td>
<td>87.5 (35-106)</td>
<td>95.1 (27-106)</td>
</tr>
<tr>
<td>Pbo</td>
<td>95.1 (45-250)</td>
<td></td>
</tr>
<tr>
<td>BTZ</td>
<td></td>
<td>86.7 (31-105)</td>
</tr>
<tr>
<td>Dex</td>
<td></td>
<td>95.1 (27-106)</td>
</tr>
</tbody>
</table>

- Relative dose intensity of PAN decreased to 78.2% at cycle 3 and remained stable through the remainder of the trial.
- Dose reduction of PAN 20 mg → 15 mg → 10 mg per protocol.
- Median duration of treatment:
 - PAN-BTZ-Dex: 152 days (3-411)
 - Pbo-BTZ-Dex: 187 days (3-443)
Progress Free Survival (PFS) - Primary Endpoint Met

- Primary endpoint was met ($P < .0001$), with clinically relevant increase in median PFS of 3.9 months for PAN-BTZ-Dex arm
Subgroup Analysis of PFS
Benefit Maintained Regardless of Baseline Characteristics

<table>
<thead>
<tr>
<th>Category</th>
<th>Hazard Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall (n=768)</td>
<td>0.63 (0.52-0.76)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
</tr>
<tr>
<td>- Caucasian (n=499)</td>
<td>0.69 (0.55-0.86)</td>
</tr>
<tr>
<td>- Asian (n=232)</td>
<td>0.54 (0.38-0.78)</td>
</tr>
<tr>
<td>- Other (n=37)</td>
<td>0.77 (0.27-2.19)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>- Male (n=407)</td>
<td>0.54 (0.41-0.70)</td>
</tr>
<tr>
<td>- Female (n=361)</td>
<td>0.76 (0.57-1.00)</td>
</tr>
<tr>
<td>Age</td>
<td></td>
</tr>
<tr>
<td>- < 65 (n=445)</td>
<td>0.59 (0.46-0.76)</td>
</tr>
<tr>
<td>- ≥ 65 (n=323)</td>
<td>0.72 (0.53-0.96)</td>
</tr>
<tr>
<td>Clinical staging by ISS</td>
<td></td>
</tr>
<tr>
<td>- Stage I (n=308)</td>
<td>0.62 (0.46-0.85)</td>
</tr>
<tr>
<td>- Stage II and III (n=359)</td>
<td>0.61 (0.47-0.80)</td>
</tr>
<tr>
<td>Cytogenetic risk group</td>
<td></td>
</tr>
<tr>
<td>- Normal risk (n=167)</td>
<td>0.88 (0.60-1.29)</td>
</tr>
<tr>
<td>- Poor risk (n=37)</td>
<td>0.47 (0.18-1.25)</td>
</tr>
</tbody>
</table>
Subgroup Analysis of PFS
Benefit Maintained Regardless of Prior Treatment History

Overall (n=768)
Number of prior lines of MM therapy
- 1 line (n=352)
- 2 or 3 lines (n=416)
Prior use of BTZ
- No (n=432)
- Yes (n=336)
Prior stem cell transplantation
- No (n=329)
- Yes (n=439)
Prior use of IMiDs
- No (n=283)
- Yes (n=485)
Prior use of IMiDs and BTZ
- No (n=570)
- Yes (n=198)
MM characteristics
- Relapsed and refractory (n=275)
- Relapsed (n=482)

Hazard Ratio (95% CI)
0.63 (0.52-0.76)
0.66 (0.50-0.86)
0.64 (0.50-0.83)
0.68 (0.53-0.87)
0.58 (0.44-0.77)
0.64 (0.48-0.85)
0.64 (0.50-0.81)
0.78 (0.57-1.08)
0.54 (0.43-0.68)
0.68 (0.55-0.85)
0.53 (0.37-0.76)
0.54 (0.39-0.75)
0.70 (0.56-0.89)
Overall Survival (OS: Interim Analysis)

Key Secondary Endpoint

- **Final OS analysis after 415 events reached**

<table>
<thead>
<tr>
<th></th>
<th>Events</th>
<th>Median OS, months (95% CI)</th>
<th>HR (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAN-BTZ-Dex</td>
<td>134/387</td>
<td>33.64 (31.34, NE)</td>
<td>0.87 (0.69-1.10)</td>
<td>NS</td>
</tr>
<tr>
<td>Pbo-BTZ-Dex</td>
<td>152/381</td>
<td>30.39 (26.87, NE)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of patients at risk
- PAN-BTZ-Dex: 387 362 333 315 306 295 284 276 265 241 210 178 147 118 92 64 40 25 12 7 4 0
- Pbo-BTZ-Dex: 381 365 344 326 314 297 284 273 251 234 211 164 140 115 90 59 39 24 15 9 4 0
Efficacy: Response

<table>
<thead>
<tr>
<th></th>
<th>PAN-BTZ-Dex (n = 387)</th>
<th>Pbo-BTZ-Dex (n = 381)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORR (PR or better)</td>
<td>60.7% [55.7, 65.6]</td>
<td>54.6% [49.4, 59.7]</td>
<td>.087</td>
</tr>
<tr>
<td>CR/nCR rate</td>
<td>27.6% [23.2, 32.4]</td>
<td>15.7% [12.2, 19.8]</td>
<td>.00006*</td>
</tr>
<tr>
<td>Median DoR</td>
<td>13.1 mos [11.8, 14.9]</td>
<td>10.9 mos [9.2, 11.8]</td>
<td>N/A</td>
</tr>
<tr>
<td>Median TTR</td>
<td>1.5 mos [1.4, 1.6]</td>
<td>2.0 mos [1.6, 2.8]</td>
<td>N/A</td>
</tr>
<tr>
<td>Median TTP</td>
<td>12.7 mos [11.8-14.9]</td>
<td>8.5 mos [7.7-9.7]</td>
<td>N/A</td>
</tr>
</tbody>
</table>

*Post-hoc analysis

- CR/nCR rate was nearly doubled vs control arm (sCR in PAN arm 2%, vs 0% Pbo arm)
- Clinically meaningful improvements in median DoR and TTP
Non-Hematologic AEs

Grade 3/4 Diarrhea and Asthenia/Fatigue Observed

<table>
<thead>
<tr>
<th>Preferred term - %</th>
<th>All grades</th>
<th>Grade 3/4</th>
<th>All grades</th>
<th>Grade 3/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarrhea</td>
<td>68.2</td>
<td>25.5</td>
<td>41.6</td>
<td>8.0</td>
</tr>
<tr>
<td>Peripheral neuropathy(^a)</td>
<td>60.6</td>
<td>17.6</td>
<td>67.1</td>
<td>14.6</td>
</tr>
<tr>
<td>Asthenia/fatigue</td>
<td>57.0</td>
<td>23.9</td>
<td>40.6</td>
<td>11.9</td>
</tr>
<tr>
<td>Nausea</td>
<td>36.2</td>
<td>5.5</td>
<td>20.7</td>
<td>0.5</td>
</tr>
<tr>
<td>Peripheral edema</td>
<td>28.6</td>
<td>2.1</td>
<td>19.1</td>
<td>0.3</td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>28.1</td>
<td>3.1</td>
<td>12.5</td>
<td>1.1</td>
</tr>
<tr>
<td>Constipation</td>
<td>26.8</td>
<td>1.0</td>
<td>32.6</td>
<td>1.1</td>
</tr>
<tr>
<td>Pyrexia</td>
<td>26.0</td>
<td>1.3</td>
<td>14.9</td>
<td>1.9</td>
</tr>
<tr>
<td>Vomiting</td>
<td>25.7</td>
<td>7.3</td>
<td>13.0</td>
<td>1.3</td>
</tr>
<tr>
<td>Cough</td>
<td>21.3</td>
<td>1.0</td>
<td>18.6</td>
<td>0</td>
</tr>
</tbody>
</table>

\(^a\) Combined incidence of hypoesthesia, muscular weakness, neuralgia, neuropathy peripheral, paraesthesia, peripheral sensory neuropathy, polyneuropathy.

- Discontinuation due to diarrhea (4.5%) and fatigue (2.9%) on PAN arm
Hematologic Lab Abnormalities

<table>
<thead>
<tr>
<th>Laboratory abnormality – %</th>
<th>PAN-BTZ-Dex (n = 381)</th>
<th>Pbo-BTZ-Dex (n = 377)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thrombocytopenia</td>
<td>All grades 97.6</td>
<td>Grade 3/4 67.4</td>
</tr>
<tr>
<td>Lymphopenia</td>
<td>All grades 82.6</td>
<td>Grade 3/4 53.2</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>All grades 75.0</td>
<td>Grade 3/4 34.5</td>
</tr>
<tr>
<td>Anemia</td>
<td>All grades 62.0</td>
<td>Grade 3/4 17.7</td>
</tr>
</tbody>
</table>

- Discontinuation due to thrombocytopenia on PAN 1.6% (vs 0.5%)
- Grade 3/4 hemorrhages on PAN 4.2% (vs 2.4%)
- Grade 4 neutropenia on PAN 6.6% (vs 2.4%)
- Febrile neutropenia on PAN 1% (vs 0.5%)

PANORAMA 1
Following an initial decrease in platelet median levels during the first 2 weeks of treatment, platelet levels rebounded to baseline by day 1 of each cycle.

Thrombocytopenia is reversible and not cumulative.
Safety Analysis

On Treatment Deaths

<table>
<thead>
<tr>
<th>Principal cause of death – n (%)</th>
<th>PAN-BTZ-Dex (n = 381)</th>
<th>Pbo-BTZ-Dex (n = 377)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total deaths</td>
<td>30 (7.9)</td>
<td>18 (4.8)</td>
</tr>
<tr>
<td>Deaths due to progressive disease</td>
<td>4 (1.0)</td>
<td>6 (1.6)</td>
</tr>
<tr>
<td>Deaths due to other causes</td>
<td>26 (6.8)</td>
<td>12 (3.2)</td>
</tr>
<tr>
<td>Infection</td>
<td>10 (2.6)</td>
<td>6 (1.6)</td>
</tr>
<tr>
<td>Hemorrhage</td>
<td>5 (1.3)</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td>Cardiac arrest</td>
<td>2 (0.5)</td>
<td>2 (0.5)</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>3 (0.8)</td>
<td>0</td>
</tr>
<tr>
<td>Acute renal failure</td>
<td>2 (0.5)</td>
<td>0</td>
</tr>
<tr>
<td>Respiratory failure</td>
<td>0</td>
<td>2 (0.5)</td>
</tr>
<tr>
<td>Cerebrovascular accident</td>
<td>1 (0.3)</td>
<td>0</td>
</tr>
<tr>
<td>Pulmonary edema</td>
<td>1 (0.3)</td>
<td>0</td>
</tr>
<tr>
<td>Ischemia secondary to surgery</td>
<td>1 (0.3)</td>
<td>0</td>
</tr>
<tr>
<td>Intentional overdose</td>
<td>1 (0.3)</td>
<td>0</td>
</tr>
<tr>
<td>Pulmonary embolism</td>
<td>0</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td>Deaths possibly related to study drugs per investigator</td>
<td>11 (2.9)</td>
<td>7 (1.9)</td>
</tr>
</tbody>
</table>
PANORAMA 1

Summary

• Superiority of PAN-BTZ-Dex: improvement in median PFS of approximately 4 mos
 – PFS benefit maintained across all subgroups
 – Approximately two-fold increase in nCR/CR rate (28% vs 16%)
• PAN-BTZ-Dex: higher rate of diarrhea, fatigue, and thrombocytopenia
 – Adverse events predictable and generally manageable with supportive measures
• Results confirm the efficacy of PAN-BTZ-Dex observed in heavily pretreated, BTZ-refractory pts (PANORAMA 2):
 – ORR: 34.5%; CBR: 52.7%; median PFS: 5.4 mos; median OS: 17.5 mos

Panobinostat: a significant advance in the treatment of pts with relapsed or relapsed and refractory MM

- Superiority of a triple drug combination vs dual drug combination
- A new option with HDACi as a novel mechanism of action
- Activity in high risk populations promising

Future Directions

- Use of SC BTZ may improve tolerability
- Other combinations with PAN under evaluation for MM
- Additional HDACi under study in MM
- Trials of PAN in MDS and myelofibrosis underway

References:
PANORAMA 1

Acknowledgments

• Patients and their Families
• Clinical Investigators and their Teams
• Study Sites and their Staff
• Preclinical Investigators, Early Phase Team
• Independent Review Committee
• Novartis
Clinical Investigators ~ a Global Team

Argentina
- Alicia Enrico
- Gustavo Jarchum
- Guillermima Remaggi

Australia
- Bradley Auguston
- Paul Cannell
- John Catalano
- Simon Durrant
- Chris Ward
- Peter Wood

Austria
- Johannes Drach
- Hedwig Kasparu

Belgium
- Rik Schots
- Koen Theunissen
- Marie-Christiane Vekemans

Brazil
- Lara Goncalves
- Vania Hungria
- Anuschka Lavalle
- Pedro Enrique Dorlhiac
- Liacer
- Juliane Mussachio
- Jorge Neto
- Cristiana Solza
- Carmino Souza

Canada
- Pierre Desjardins
- Chrisostomos Kouroukis
- Richard LeBlanc
- Darrell White

China
- Zhen Cai
- WenMing Chen
- Xiaojun Huang
- Jian Hou
- Yongrong Lai
- JianYong Li
- Ting Liu
- Lugui Qiu
- Zhixiang Shen
- Depei Wu
- Daobin Zhou

Czech Republic
- Roman Hajek
- Vlastimil Scudla
- Ivan Spicka

Denmark
- Niels Abildgaard
- Niels Frost Andersen
- Peter Gimsing
- Henrik Gregersen
- Torbin Plesner

Egypt
- Ashraf Elghandour
- Mervat Mattar

Finland
- Kimmo Porkka
- Kari Remes

France
- Denis Caillot
- Bertrand Coiffier
- Thierry Facon
- Cyrille Hulin
- Arnaud Jaccard
- Frederic Maloisel
- Claire Mathiot
- Philippe Moreau
- Philippe Rodon

Germany
- Igor Wolfgang Blau
- Matthias Bornmann
- Reyad Dada
- Hermann Einsele
- Aristotele Giagounides
- Andreas Guenther
- Heiko Hutton
- Christian Junghans
- Meinolf Karthaus
- Christian Langer
- Lars-Olof Muegge
- Oliver Ottmann
- Peter Reichardt
- Roland Repp
- Christoph Roellig
- Wolf Roessler
- Hans Salwender
- Isrid Sturm

Greece
- Achilleas Anagnostopoulos
- Melitos Dimopoulos

Hong Kong
- James Chim
- Herman Liu
- Raymond Wong

Israel
- Dina Ben-Yehuda
- Neri Shpilberg

Italy
- Paolo Corradi
- Alessandro Corso
- Alfonso Maria D’Arco
- Paolo DeFabritiis
- Nicola Di Renzo
- Francesco Dileo
- Giuseppe Fermo
- Roberto Foà
- Vittorio Meneghini
- Mario Petrini
- Antonino Pinto

Japan
- Takaaki Chou
- Tomoaki Fujisaki
- Shibayama Hirohiko
- Shinsuke Iida
- Suzuki Kensi
- Takuya Komine
- Hiroshi Kosugi
- Masayuki Hino
- Morio Matsumoto
- Toshiiro Miyamoto
- Kirokasu Nagai
- Hiromasa Niimi
- Kazutaka Sunami
- Yoshiaki Kuroda

Korea
- Je Jung Lee
- Joo Seop Chung
- Chang-Ki Min
- Jin Seok Kim
- Kihyun Kim
- Sung-Hyun Kim
- Jae Hoon Lee
- Sang Kyun Sohn
- Sung-Soo Yoon

Lebanon
- Ahmad Ibrahim

Mexico
- Oscar de Jesus Perez Ramirez

Netherlands
- Monique Minnema
- Pieter Sonneveld

Norway
- Birgitte Eiken
- Oyvind Hjertner
- Roald Lindas
- Jan Rolke

Poland
- Wieslaw Jedrzejczak
- Krzysztof Warzocha

Russia
- Kudrat Abdulkadyrov
- Tatiana Shelekhova

Singapore
- Daryl Chen Lung Tan

South Africa
- Graham Cohen
- Paul Ruff

Spain
- Jose Luis Lopez Bello
- Joan Bladé
- Javier de la Rubia
- Maria Asuncion Echeveste
- Miquel Granell
- Miguel Hernandez
- Jesus Martin
- Eduardo Olavarria
- Jesus San-Miguel
- Antonio Torres

Sweden
- Lucia Ahlberg
- Lauri Birgitta
- Kristina Carlsson
- Hareth Nahl
- Ljupco Veskovski

Taiwan
- Chang-Fang Chiu
- Shang-Yi Huang
- Ming-Chung Kuo
- Ming-Chung Wang

Turkey
- Yildiz Aydin
- Meral Beksac
- Emel Gurkan

United Kingdom
- Supratik Basu
- Jamie Cavenagh
- Steve Schey
- Kwee Yong

United States
- Howard Adler
- Manish Agrawal
- Vincent Armento
- Kathryn Arrambide
- Kevin Barton
- Jesus Berdeja
- Donald Brooks
- Steven Coutre
- Sahovic Entezam
- Patrick Flynn
- Jonathan Goldberg
- Sayed Hamadani
- Robert Herman
- Andy Jang
- Adetola Kassim
- Han Koh
- John Liang
- Sagar Lonial
- Michael Milder
- Glenn Mills
- Joseph Muscato
- Paul Richardson
- Robert Robles
- Robert Schlossman
- Shanthi Srinivas
- Donna Weber
- Burhan Yanes