This activity is provided by the Annenberg Center for Health Sciences at Eisenhower and developed in partnership with Clinical Care Options, LLC and the International Myeloma Foundation.

Triple-Class Refractory: Selecting BCMA-Directed Therapy?

Thomas G. Martin, MD

Clinical Professor of Medicine Co-Director, Myeloma Program University of California, San Francisco Medical Center San Francisco, California

Faculty

Thomas G. Martin, MD

Clinical Professor of Medicine Co-*Director*, Myeloma Program University of California, San Francisco Medical Center San Francisco, California

Thomas G. Martin, MD, has disclosed that he has received consulting fees from GSK and funds for research support from Amgen, Johnson & Johnson – Janssen, Sanofi, and Seattle Genetics.

Patient Scenario

- 67-year-old male presented with standard risk IgG kappa MM
 - B2M 3.4, Alb 3.6, LDH 150, Cr 1.1, Ca 8.7, FISH: hyperdiploid (+5, +9, +15)
- He has received **3** prior lines of therapy
 - RVd for 6 cycles followed by ASCT and continuous R maintenance for 36 months (progresses on maintenance –refractory to R 10 mg QD)
 - DaraKd for 19 months achieves VGPR then progresses (Triple class refractory)
 - EloPd for 6 cycles achieves PR then PD (3 prior lines: refractory to R/P/K/Dara)
- Options for triple-class drug refractory (IMiD, PI, CD38) are limited

Presurvey 5: In your current practice, what would you recommend next for this patient?

- 1. Triplet or quadruplet combination with previously used agents
- 2. Cyclophosphamide-based combination chemotherapy
- 3. Selinexor + dexamethasone
- 4. Belantamab mafodotin
- 5. BCMA-targeted CAR T-cell
- 6. BCMA-targeted bispecific T-cell engager
- 7. Salvage ASCT
- 8. Salvage AlloSCT
- 9. Uncertain

Expert Recommendations

Expert Recommendations	
Brian G.M. Durie, MD	BCMA-targeted CAR T-cell
Shaji Kumar, MD	BCMA-targeted CAR T-cell
Thomas G. Martin, MD	BCMA-targeted CAR T-cell
Philippe Moreau, MD	BCMA-targeted CAR T-cell
S. Vincent Rajkumar, MD	Cyclophosphamide-based combination chemotherapy
Jesús San-Miguel, MD	BCMA-targeted CAR T-cell

Poll 5: What would be your expectation for survival in patients with R/R MM?

- 1. Triple-class refractory: expected OS > 2 years
- 2. Triple-class refractory: expected OS 1-2 years
- 3. Triple-class refractory: expected OS < 10 months
- 4. Penta-refractory: expected OS > 6 months
- 5. Survival not measurable with novel BCMA-targeted therapies
- 6. Uncertain

Expert Recommendations

Expert Recommendations

Brian G.M. Durie, MD	Triple-class refractory: expected OS > 2 years
Shaji Kumar, MD	Triple-class refractory: expected OS 1-2 years
Thomas G. Martin, MD	Triple-class refractory: expected OS < 10 months
Philippe Moreau, MD	Triple-class refractory: expected OS 1-2 years
S. Vincent Rajkumar, MD	Triple-class refractory: expected OS > 2 years
Jesús San-Miguel, MD	Triple-class refractory: expected OS 1-2 years

Patients with Triple-Class Refractory MM

- The unmet need with poor prognosis
- MAMMOTH Study
 - Retrospective review of R/R MM
 - 275 patients
 - PI, IMiD, and CD38 exposed
 - Median OS was < 9 months in MAMMOTH in patients with disease refractory to anti-CD38 mAbs
 - Median OS was < 6 months if penta-refractory
 - **Current treatment options** include conventional chemotherapy, salvage ASCT, recycling previous regimens, selinexor + dexamethasone, belantamab mafodotin and clinical trials

Median OS in MAMMOTH study from T_0

Triple-Class Refractory: When All Else Fails

Chemotherapy	HDAC / <i>ADC</i> XPO inhibitors	Monoclonal Antibodies	IMiDs / CELMoDs/ Novel Drugs	<u>BCMA Abs</u> Bispecifics/ ADCs	<u>Cellular therapies</u> BCMA CARs
Doxorubicin, Liposomal doxorubicin	Panobinostat/ Vorinostat	<u>Next Gen 38</u> SAR442085	CC-220 (Iberdomide), CC-92480	Teclistamab AMG-701, CC-93269	Cilta-cel (JNJ-4528) Ide-cel (bb2121), Orva-cel (JCARH125)
Cyclophosphamide, Bendamustine, Melphalan	Belantamab Mafodotin	TAK-079, TAK-573, TAK-169	Venetoclax Melflufen	TNB-3838, REGN5458 PF-06863135	LCAR-B38M, bb21217 , P-BCMA-101
PACE, HyperCAD	Selinexor	MOR202, Others	BFCR4350A Talquetamab	MEDI2228, CC-99712 FOR46	Lummicar-2 (CT053) ALLO-715 ALLO-605 (TurboCAR)

*Blue = approved

Green = ongoing clinical trials

Immunotherapy for MM

- Targets and Therapeutics
- Current MM <u>Targets</u>
 - BCMA
 - <u>GPRC5D</u>
 - <u>FcRH5</u>
 - CD138
 - CD38
 - CD19
 - SLAMF7
 - ASCT2
 - CD229
 - Kappa light chain

- BCMA <u>Therapeutics</u>
 - CARs
 - Idecaptagene Vicleucel
 - Ciltacabtagene autoleucel
 - ADCs
 - Belantamab mafodotin
 - MEDI2228
 - Bispecific antibodies
 - Teclistamab
 - ~6 others at ASH2020

Belantamab Mafodotin (GSK2857916): A BCMA-Targeted Antibody Drug Conjugate

- Belantamab mafodotin
 - humanized, IgG1
 - afucosylated anti-BCMA
 - Toxin **MMAF**
 - Phase I study
 - Part 2: 3.4 mg/kg Q3W
 - Potent activity (ORR ~60%)
 - Ocular toxicity (~63%)
 - Thrombocytopenia (34%)

Mechanisms of Action: 1. ADC mechanism 2. ADCC mechanism 3. Immunogenic cell death

Fc region of the antibody	–Target specific –Enhanced ADCC
Linker	–Stable in circulation
Drug	–MMAF (non-cell permeable, highly potent auristatin)

Tai. Blood. 2014;123:3128. Trudel. Lancet Oncol. 2018;19:1641.

DREAMM-2 Study Design

A phase II, open-label, randomized 2-dose study in RR MM after an anti-CD38 therapy. Primary analysis of DREAMM-2 completed at median follow-up of 6.3 and 6.9 months for the 2.5 mg/kg and 3.4 mg/kg cohorts, respectively. Additional analysis was completed at 13 months of follow-up.

*Patients stratified based on number of previous lines of therapy (<4 vs >4) and presence or absence of high-risk cytogenetic features; **According to International Myeloma Working Group 2016 criteria.

BCMA, B-cell maturation antigen; CBR, clinical benefit rate; DOR. duration of response; ECOG PS, Eastern Cooperative Oncology Group performance status; IMiD, immunomodulatory imide drug; IV, intravenous; MEC, microcyst-like epithelial change; ORR, overall response rate; OS, overall survival; PD, progressive disease; PFS, progression-free survival; PR, partial response; RRMM, relapsed/refractory multiple myeloma; SCT, stem-cell transplantation; TTBR, time to best response; TTR, time to response.

1. Lonial. Lancet Oncol. 2020;21:207-221. 2. Lonial. Poster presented at: ASCO 2020. Abstr 436.

DREAMM-2 Results

Key efficacy data

Response	2.5 mg/kg N = 97	3.4 mg/kg N = 99
Follow-up	13 m	onths
ORR, n (%) sCR CR VGPR PR	31 (32%) 2 (2%) 5 (5%) 11 (11%) 13 (13%)	35 (35%) 2 (2%) 3 (3%) 18 (18%) 12 (12%)
Median PFS (95% CI), mo	2.8 (1.6-3.6)	3.9 (2.0-5.8)
Median DoR estimate, mo	11	6.2
Median OS estimate, mo	13.7	13.8

• ORRs were comparable in both HR and SR patients

Lonial. Lancet Oncol. 2020;21:207-221. Lonial. 2020 ASCO Annual Meeting. Abstr 436.

Key safety data

AE, n (%)	2.5 mg/kg N = 95	3.4 mg/kg N = 99
Grade 3-4 AE (≥20%) Keratopathy Thrombocytopenia Anemia	44 (46%) 21 (22%) 20 (21%)	42 (42%) 32 (32%) 27 (27%)
Serious AE SAE leading to death	40 (42%) 3 (3%)	47 (47%) 9 (9%)

- Overall safety at 2.5 mg/kg
 - Keratopathy (Gr 1-4) 72%
 - Thrombocytopenia (Gr 1-4) 38%
- 2 deaths were considered potentially treatment related:
 - 2.5 mg/kg: sepsis (n = 1)
 - 3.4 mg/kg: hemophagocytic lymphohistiocytosis (n = 1)
- Overall rates of anemia and thrombocytopenia were higher in HR than SR

ADC Summary in RRMM

• What more do we need?

- Improved response rates and durability with combinations
 Trudel et al. ASH 2020, Abstr 725: Belantamab + Pom
 Popat et al. ASH 2020 , Abstr 1419: Belantamab + Vd
- 2. Improved safety

Split/intermittent dosing of Belantamab

Novel toxin:

Kumar et al. ASH 2020, Abstr 179 – MEDI2228 [pyrrolobenzodiazepine dimer] Shah et al. ASH 2020, Abstr 3030 – STRO-001 [maytansinoid]

- 3. Additional targets CD74/CD46/SLAMF7
- 4. Mechanism of resistance

Antigen loss

P-glycoprotein

BCMA CAR T-Cell Studies: Efficacy

	lde-ce	l (bb212	1) Phll		bb21217	,	Cilta-cel (JNJ-4528)	Orva-c	el (JCAR	-H125)
Cell Dose	150	300	450	150	300	450	0.75 x 10 ⁶ / kg	300	450	600
Median follow-up, 13.3 mos		17.6	4.0	3.3	11.5 (3.0 – 17.0)	9.5	8.8	2.3		
Response Rate										
ORR	50%	69%	82%	83%	43%	57%	100%	95%	89%	92%
CR	25%	29%	39%	33%	0%	14%	86%	37%	42%	29%
MRD										
Evaluable for MRD, #	4	70	54	7	6	4	21	11	11	3
MRD- (%)	50%	31%	48%	100%	83.3%	100%	85.7%	72.7%	90.9%	100%
Median DoR, mos	NR	9.9	11.3	11.1	NR	NR	NR	NR	NR	NR
Median PFS	2.8	5.8	12.1	NR	NR	NR	NR	9.3	NR	NR

[updates at ASH2020: Cilta-cel PhII, bb2121 PhI, bb2121-7, Poseida BCMA-CAR, CD19-BCMA dual targeted CAR, Allo715-BCMA]

Munshi. ASCO 2020. Abstr 8503. Berdeja. ASH 2019. Abstr 927. Berdeja. ASCO 2020. Abstr 8505; Mailankody. ASCO 2020. Abstr 8504.

BCMA CAR T-Cell Studies: Safety

	lde-cel (bb2121) Phll	bb21217	Cilta-cel (JNJ-4528)	Orva-cel (JCAR-H125)				
Cytokine Release Synd	Cytokine Release Syndrome							
All Grades	84%	66%	93%	89%				
Grade 3 / 4 / 5	4% / <1% / <1%	5% / 0% / 3%	7%	3%				
Median Onset, Days	1 (1 – 12)	3 (1 – 20)	7 (2 – 12)	2 (1 – 4)				
Median Duration	5 (1 – 63)	4 (1 – 28)	4 (2 – 64)	4 (1 – 10)				
Neurotoxicity	Neurotoxicity							
All grades	18%	24%	10%	13%				
Grade 3 / 4 / 5	3% / 0% / 0%	5% / 3% / 0%	3%	3%				
Median Onset, Days	2 (1 – 10)	7 (3 – 24)	NR	4 (1 – 6)				
Median Duration	3 (1 – 26)	NR	NR	4 (1 – 10)				

[updates at ASH2020: Cilta-cel PhII, bb2121 PhI, bb2121-7, Poseida BCMA-CAR, CD19-BCMA dual targeted CAR, Allo715-BCMA]

CAR T-Cell Summary in RRMM

- What more do we need?
 - 1. Improved CARs
 - Faster Manufacturing or *Off-the-shelf* Better T-cells – Tscm/cm Persistence: a good "second wave"
 - 2. Improved patient selection Early relapse (1-3 PLT) Frontline: replace ASCT? Lower burden of disease
 - Additional targets and combinations GPRC5D +/- BCMA CD19 + BCMA CAR + BISPECIFIC, CAR + CelMOD
 - 4. Mechanism for resistance Antigen loss Myeloma "stem cell"

Teclistamab – ASCO 2020

Dosing - Weekly step-up

> Part 2 Dose Expansion

STUDY ENROLLMENT AND RESULTS

- 78 patients enrolled
- 6 PLT, 31% HR cytogenetics
- 80% triple class refractory
- Toxicity:
 - CRS: overall 56%
 - Neurotox: 8% Gr 1-4 (3% Gr 3-4)

Teclistamab - Results

BCMA Bispecific mAb Studies: Efficacy

	AMG420 CC-93269		Teclistamab	
Dose	400 ug/day	$6 \rightarrow 10$ mg and 6 mg	270 ug / kg	
Ν	10	9	12	
Median follow-up, mos	NR	NR	NR	
Response Rate				
ORR	70%	88.9%	67%	
CR	50%	44.4%	25%	
MRD				
Evaluable for MRD, #	10	NR	5	
MRD- (%)	50%	NR	80%	
Median DoR, mos	9.0 (range 5.8 – ≥13.6)	11 of 13 ongoing	16 of 21 ongoing	

[Many bispecific antibody updates and new presentations at ASH 2020]

Topp. JCO. 2020;38:775. Abstr 8503. Costa. ASH 2019. Abstr 143. Usmani. ASCO 2020. Abstr 100

Bispecific Summary in RRMM

• What more do we need?

1. Phase II study results

Optimized step-up dosing

Responses in RRMM including EMD and HR

Convenient schedule for long-term dosing

2. Improved safety

Outpatient administration

Prophylactic use of tocilizumab/other CRS mitigation strategies

- 3. Additional targets CD38/SLAMF7/GPRC5D/FcRH5
- Improved response rates and durability with combinations
 Bispecific mAb + IMiDs, PIs, CD38 Abs
 Bispecific + CelMODs

BCMA Therapeutics – Advantages/Disadvantages

	Antibody–drug conjugate	CAR T-cells	Bispecific antibody
_	Off-the-shelf	Personalized	Off the shelf
	Targeted cytotoxicity Not dependent on T-cell health	Targeted immuno-cytotoxicity	Targeted immuno-cytotoxicity
	No lymphodepletion No steroids	Single infusion ("one and done")	No lymphodepletion Minimal steroids
_	Available to any infusion center Outpatient administration	Potentially persistent	
-		Fact accredited center required (hospitalization likely required)	Initial hospitalization required
	Currently requires REMS/Ophtho	CRS and Neurotoxicity; requires ICU and Neurology services	CRS and Neurotoxicity possible
	Single agent activity low in CD38 refractory patients	Dependent on T-cell health (manufacturing failures)	Dependent on T-cell health (T-cell exhaustion)
_	Requires continuous administration	Requires significant support social – caregiver required	Requires continuous administration

\$\$\$\$

\$\$\$

\$\$

Sequencing of BCMA Targeted Therapeutics

- As of Now → Belantamab Mafodotin [only FDA approved modality]
 - Triple Refractory => many centers chose clinical trial

Sequencing of BCMA Targeted Therapeutics

- As of Now → Belantamab Mafodotin [only FDA approved modality]
 - Triple Refractory => many centers chose clinical trial
- In 1st /2nd Quarter 2021 → there will be a choice [Guideline from IMS]
 - BCMA Targeted CAR T-cell (Ide-cel) → Fit, well-resourced, triple refract
 - Belantamab Mafodotin → less fit, limited social support, rapidly progressive
 - 3rd/4th Quarter → potentially a second CAR Cilta-cel may be approved

Sequencing of BCMA Targeted Therapeutics

- As of Now → Belantamab Mafodotin [only FDA approved modality]
 - Triple Refractory => many centers chose clinical trial
- In 1st /2nd Quarter 2021 → there will be a choice [Guideline from IMS]
 - BCMA Targeted CAR T-cell (Ide-cel) → Fit, well-resourced, triple refract
 - Belantamab Mafodotin → less fit, limited social support, rapidly progressive
 - 3rd/4th Quarter → potentially a second CAR Cilta-cel may be approved
- In 2022 and beyond → other CARs, ADCs and bispecific mAbs
 - CD38 + triplet (induction) \rightarrow BCMA CAR consolidation \rightarrow BCMA ADC early relapse
 - CD38 + doublet/triplet for induction \rightarrow bispecific maintenance \rightarrow BCMA-ADC relapse
 - BCMA-ADC + doublet induction \rightarrow GPRC5D CAR at relapse \rightarrow FcRH5 bispecific RRMM

Future Strategies in Multiple Myeloma

Where and in what combination will immunotherapy have the most Impact?

MRD (-): Maintenance: Len (CELMoD)/mAb vs. Bispecific

Conclusions: Next Generation Therapeutics

- Triple Class Refractory is an UNMET Need
 - Belantamab mafodotin: BCMA-ADC \rightarrow approved in this population
 - BCMA directed CAR T-cell therapeutics \rightarrow will be available soon
 - Initial bispecific antibody results promising
 - Off-the-shelf products, toxicity is manageable
 - Bind BCMA, GPRC5D, FCRH5
- Need better understanding mechanisms of resistance
 - Loss of antigen
 - T cell burnout/exhaustion
- Combinations of novel-novel drugs on-going
- Sequencing of these therapeutics will be important and future sequencing studies will be important

Now, let's return to our patient case

Patient Case Example: R/R MM

- 67-year-old male presented with standard risk IgG kappa MM
 - B2M 3.4, Alb 3.6, LDH 150, Cr 1.1, Ca 8.7, FISH: hyperdiploid (+5, +9, +15)
- He has received **3** prior lines of therapy
 - RVd for 6 cycles followed by ASCT and continuous R maintenance for 36 months (progresses on maintenance –refractory to R 10 mg QD)
 - DaraKd for 19 months achieves VGPR then progresses (Triple class refractory)
 - EloPd for 6 cycles achieves PR then PD (3 prior lines: refractory to R/P/K/Dara)
- Options for triple-class drug refractory (IMiD, PI, CD38) are limited
- Approved agents are available
 - Belantamab mafodotin
 - Selinexor + Dex
 - Alkylator therapy [cyclophosphamide-based, bendamustine, 2nd autologous SCT]

Assessment 5: Now, what would you recommend next for this patient?

- 1. Triplet or quadruplet combination with previously used agents
- 2. Cyclophosphamide-based combination chemotherapy
- 3. Selinexor + dexamethasone
- 4. Belantamab mafodotin
- 5. BCMA-targeted CAR T-cell
- 6. BCMA-targeted bispecific T-cell engager
- 7. Salvage ASCT
- 8. Salvage AlloSCT
- 9. Uncertain

Panel Discussion: BCMA-Directed Therapy

