

Early Treatment for High-Risk Smoldering MM: Going for a Cure?

Shaji Kumar, MD

Mark and Judy Mullins Professor of Hematological Malignancies Chair, Myeloma, Amyloidosis, Dysproteinemia Group Department of Hematology Mayo Clinic Rochester, Minnesota

Disclosures

Shaji Kumar, MD, has disclosed that he has received funds for research support from AbbVie, Bristol-Myers Squibb, Celgene, Genentech, Janssen, MedImmune, Oncopeptides, Takeda, and TeneoBio and consulting fees from AbbVie, Bristol-Myers Squibb, Celgene, Genentech, Janssen, Oncopeptides, and Takeda.

Patient Scenario

- A 56-year-old woman was noted to have elevated total protein during routine evaluation and underwent additional testing
 - Hb: 13.2 g/dL
 - Serum calcium: 9.2 mg/dL, creatinine: 0.8 mg/dL, LDH: normal, B2M:
 3.7 mg/dL
 - SPEP: 2.3 g/dL M spike (IgG kappa), serum FLC kappa 40 mg/dL, lambda
 1.2 mg/dL, k:l ratio 33
- Bone marrow biopsy showed 40% plasma cells, FISH shows t(4;14)
- Whole body low-dose CT negative for lytic lesions
- MRI spine shows marrow heterogeneity, no lesions

Presurvey 1: In your current practice, what would you recommend next for this patient?

- 1. Continue observation and repeat testing in 6 months
- 2. Continue observation and repeat testing in 2 months
- 3. Start treatment with lenalidomide/dexamethasone
- 4. Start treatment with bortezomib/lenalidomide/dexamethasone with plans for an ASCT after 4 cycles
- 5. Enroll in a clinical trial
- 6. Uncertain

Expert Recommendations

Expert Recommendations	
Brian G.M. Durie, MD	Enroll in a clinical trial
Shaji Kumar, MD	Enroll in a clinical trial
Thomas G. Martin, MD	Enroll in a clinical trial
Philippe Moreau, MD	Enroll in a clinical trial
S. Vincent Rajkumar, MD	Start treatment with lenalidomide/dexamethasone
Jesús San-Miguel, MD	Start treatment with VRD, with plans for ASCT

Smoldering Myeloma

THE NEW ENGLAND JOURNAL OF MEDICINE

June 12, 1980

SMOLDERING MULTIPLE MYELOMA

1348

ROBERT A. KYLE, M.D., AND PHILIP R. GREIPP, M.D.

MULTIPLE myeloma is characterized by an increase of abnormal plasma cells in the bone marrow and monoclonal protein in the serum, often with osteolytic bone lesions. Its course is progressive: anemia, weakness, fatigue, fractures, bone pain, hypercalcemia, renal insufficiency, recurrent infections, bleeding, and deterioration lead to death. However, we have seen six patients with illnesses that met the criteria for the diagnosis of multiple myeloma¹ but have not had a progressive course. Although no chemotherapy was given, their condition has remained stable for five or more years. We designate these cases as "smoldering multiple myeloma." We wish to call attention to this group because smoldering multiple myeloma should be recognized, and treatment withheld.

able	1.	Characteristics of	Six Patients	with	Smoldering
		Multiple	Myeloma.*		
	_				

CHARACTERISTIC			PATIENT	NUMBER	i	
	1	2	3	4	5	6
Age at diagnosis (yr) Sex	70 M	73 M	61 M	57 F	63 F	61 F
Hemoglobin (g/dl) Initial Last	13.1 12.8	13.5 13.8	15.5 14,2	11.7 12.6	12.2 12.7	12.8 13.5
Serum M protein Mobility g/dl Class/subclass	β-γ 3.4 G2*	β 3.0 G1λ	γ 3.6 Gικ	β 3.1 G2*	γ 3.0 G2#	β 3.6 Αλ
Urinary M protein Type g/24 hr	* 0.30	λ 0.50	к 0.06	к 0.39		λ 0.06
lmmunoglobulins (mg/ml) lgG lgA lgM	65 0.32 0.00	25 0.35 0.23	65 0.9 0.4	27 1.7 0.5	23 0.75 0.67	5 26.6 0.29
Marrow plasma cells (per cent) Labeling index (per cent)	16 0.0	17 0.0	17 0.0	11 0.0	13 0.0	10 0.0
Asynchrony Mycloma 0.47±0.33 † MGUS ‡ 0.05±0.10 †	0.4	0.0	0.0	0.1	0.1	0.7
Nucleolar size (µm) Myeloma 1.6±0.76 † MGUS ‡ 0.47±0.44 ‡	1.4	1.2	0.5	0.7	0.8	1.1
Follow-up (vr)	16	5	5	6	5	5

Smoldering Myeloma

THE NEW ENGLAND JOURNAL OF MEDICINE

June 12, 1980

SMOLDERING MULTIPLE MYELOMA

1348

ROBERT A. KYLE, M.D., AND PHILIP R. GREIPP, M.D.

MULTIPLE myeloma is characterized by an increase of abnormal plasma cells in the bone marrow and monoclonal protein in the serum, often with osteolytic bone lesions. Its course is progressive: anemia, weakness, fatigue, fractures, bone pain, hypercalcemia, renal insufficiency, recurrent infections, bleeding, and deterioration lead to death. However, we have seen six patients with illnesses that met the criteria for the diagnosis of multiple myeloma¹ but have not had a progressive course. Although no chemotherapy was given, their condition has remained stable for five or more years. We designate these cases as "smoldering multiple myeloma." We wish to call attention to this group because smoldering multiple myeloma should be recognized, and treatment withheld.

Table 1. Characteristics of Six Patients with Smoldering Multiple Myeloma.*

					_	
CHARACTERISTIC			PATIENT	r Number		
	1	2	3	4	5	6
Age at diagnosis (yr) Sex	70 M	73 M	61 M	57 F	63 F	61 F
Hemoglobin (g/dl) Initial Last	13.1 12.8	13.5 13.8	15.5 14.2	11.7 12.6	12.2 12.7	12.8 13.5
Serum M protein Mobility g/dl Class/subclass	β-γ 3.4 G₂×	β 3.0 G1λ	γ 3.6 Gι×	β 3.1 G2#	γ 3.0 G ₂ s	β 3.6 Αλ
Urinary M protein Type g/24 hr	* 0.30	λ 0.50	к 0.06	к 0.39		λ 0.06
Immunoglobulins (mg/ml) IgG IgA IgM	65 0.32 0.00	25 0.35 0.23	65 0.9 0.4	27 1.7 0.5	23 0.75 0.67	5 26.6 0.29
Marrow plasma cells (per cent) Labeling index (per cent)	16 0.0	17 0.0	17 0.0	11 0.0	13 0.0	10 0.0
Asynchrony Mycloma 0.47±0.33 † MGUS ‡ 0.05±0.10 †	0.4	0.0	0.0	0.1	0.1	0.7
Nucleolar size (µm) Myeloma 1.6±0.76 † MGUS ‡ 0.47±0.44 ‡	1.4	1.2	0.5	0.7	0.8	1.1
Follow-up (vr)	16	5	5	6	5	5

Smoldering Myeloma

THE NEW ENGLAND JOURNAL OF MEDICINE

June 12, 1980

SMOLDERING MULTIPLE MYELOMA

1348

ROBERT A. KYLE, M.D., AND PHILIP R. GREIPP, M.D.

MULTIPLE myeloma is characterized by an increase of abnormal plasma cells in the bone marrow and monoclonal protein in the serum, often with osteolytic bone lesions. Its course is progressive: anemia, weakness, fatigue, fractures, bone pain, hypercalcemia, renal insufficiency, recurrent infections, bleeding, and deterioration lead to death. However, we have seen six patients with illnesses that met the criteria for the diagnosis of multiple myeloma1 but have not had a progressive course. Although no chemotherapy was given, their condition has remained stable for five or more years. We designate these cases as "smoldering multiple myeloma." We wish to call attention to this group because smoldering multiple myeloma should be recognized, and treatment withheld.

Table 1. Characteristics of Six Patients with Smoldering Multiple Myeloma.*

1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		1. N	2210-22			
CHARACTERISTIC			PATIEN	r Number		
	1	2	3	4	5	6
Age at diagnosis (yr) Sex	70 M	73 M	61 M	57 F	63 F	61 F
Hemoglobin (g/dl) Initial Last	13.1 12.8	13.5 13.8	15.5 14.2	11.7 12.6	12.2 12.7	12.8 13.5
Serum M protein Mobility g/dl Class/subclass	β-γ 3.4 G₂×	β 3.0 G1λ	γ 3.6 Gι×	β 3.1 G2#	γ 3.0 G ₂ s	β 3.6 Αλ
Urinary M protein Type g/24 hr	* 0.30	λ 0.50	к 0.06	к 0.39	— Nega- tive	λ 0.06
Immunoglobulins (mg/ml) IgG IgA IgM	65 0.32 0.00	25 0.35 0.23	65 0.9 0.4	27 1.7 0.5	23 0.75 0.67	5 26.6 0.29
Marrow plasma cells (per cent) Labeling index	16 0.0	17 0.0	17 0.0	11 0.0	13 0.0	10 0.0
(per cent) Asynchrony Mycloma 0.47±0.33 † MGUS ± 0.05±0.10 †	0.4	0.0	0.0	0.1	0.1	0.7
Nucleolar size (µm) Myeloma 1.6±0.76 † MGUS ‡ 0.47±0.44 ‡	1.4	1.2	0.5	0.7	0.8	1.1
Follow-up (yr)	16	5	5	6	5	5

- 1. Patients are asymptomatic
- 2. We do not know who will get myeloma
- 3. Treatments are toxic and have limited efficacy
- 4. No evidence to suggest that it improves survival

1. Patients are asymptomatic

First symptom may be catastrophic

- 2. We do not know who will get myeloma
- 3. Treatments are toxic and have limited efficacy
- 4. No evidence to suggest that it improves survival

1. Patients are asymptomatic

First symptom may be catastrophic

2. We do not know who will get myeloma

We have better risk stratification systems

- 3. Treatments are toxic and have limited efficacy
- 4. No evidence to suggest that it improves survival

1. Patients are asymptomatic

First symptom may be catastrophic

2. We do not know who will get myeloma

We have better risk stratification systems

3. Treatments are toxic and have limited efficacy

We have highly effective therapies

4. No evidence to suggest that it improves survival

1. Patients are asymptomatic

First symptom may be catastrophic

2. We do not know who will get myeloma

We have better risk stratification systems

3. Treatments are toxic and have limited efficacy

We have highly effective therapies

4. No evidence to suggest that it improves survival

We have phase III trials now

Progression By Risk Group

San Miguel. ASCO 2019. Abstr 8000. Mateos Blood Cancer J. 2020;10:102.

Risk Score to Predict Progression Risk At 2 Years

Phase III QuiRedex: Lenalidomide/Dex vs Observation

Caveat: No advanced imaging \rightarrow many patients may have had active myeloma

MAYO CLINIC

Mateos. NEJM. 2013. Mateos. Lancet Oncology 2016. Mateos. EHA 2020. Abstr EP950.

Phase III QuiRedex with Len/Dex vs Observation: OS From Progression To Active Disease

Early treatment does not induce more resistant relapses

Phase II/III E3A06: Lenalidomide vs Observation

	Tanalidamida	T analidamida	Observation
	Lenandomide	Lenalidomide	Observation
	[n=44]	[n=90]	[n=92]
	Phase II	Phase III	
Category	N (%)	N (%)	N (%)
VGPR or Better	4 (9.1)	4 (4.4)	0 (0.0)
PR or Better	21 (47.7)	44 (48.9)	0 (0.0)
SD or Better	42 (95.5)	84 (93.3)	80 (87.0)

Phase III PFS	<u>Len</u>	<u>Obs</u>
1 year	0.98	0.89
2 year	0.93	0.76
3 year	0.91	0.66

More questions than answers

- If we treat, should we be treating like myeloma?
- Or should it be a low intensity to delay progression?
- Or should it be more aggressive to potentially cure the disease?
- What is a good surrogate for cure?
- When do we stop treatment?

Phase III EAA173: Daratumumab to Enhance Therapeutic Effectiveness of Lenalidomide in Smoldering Myeloma (DETER-SMM)

CurativE StrAtegy for High-Risk Smoldering Myeloma (GEM-CESAR)

Phase II Trial	<i>Induction</i>		<i>Consolidation</i>	<i>Maintenance</i>
Enrollment	6 x 28-day cycles		2 x 28-day cycles	24 x 28-day cycles
Patients newly diagnosed with high-risk* smoldering MM (N = 90)	Carfilzomib IV 20/36 mg/m ² D1, 2, 8, 9, 15, 16 Lenalidomide 25 mg D1-21 Dexamethasone 40 mg D1, 8, 15, 22	High-dose melphalan 200 mg/m ² followed by ASCT	Carfilzomib IV 20/36 mg/m ² D1, 2, 8, 9, 15, 16 Lenalidomide 25 mg D1-21 Dexamethasone 40 mg D1, 8, 15, 22	Lenalidomide 10 mg D1-21 Dexamethasone 20 mg D1, 8, 15, 22

Response Category, n (%)	Induction (n = 90)	HDM-ASCT (n = 83)	High Risk (n = 55)	Ultrahigh Risk (n = 28)
ORR, n (%)	85 (94)	82 (99)	54 (95)	28 (100)
■ ≥ CR	37 (41)	53 (64)	35 (64)	18 (64)
 VGPR 	35 (39)	18 (22)	12 (22)	6 (21)
■ PR	13 (14)	11 (13)	7 (13)	4 (14)
Stable disease	1 (1)	1(1)	1 (2)	
Progressive disease	2 (3)			
MRD negative	27 (30)	47 (56)	32 (58)	15 (54)

5 patients did not undergo ASCT: PD after induction (n = 2); ASCT mobilization failure (n = 2); patient decision (n = 1)

PBSC mobilization after C 4 of induction: **93% successful with G**-**CSF**, 7% required plerixafor; mean CD34 cells collected: 4 x 10⁶/kg and 11 patients required second mobilization

Mateos. ASH 2019. Abstr 781.

CurativE StrAtegy for High-Risk Smoldering Myeloma (GEM-CESAR)

Outcomes including Consolidation & 1 year maintenance

77 patients completed induction, HDT-ASCT, consolidation, and 1 yr of maintenance

Response, %	Induction (KRd x 6) (n = 77)	HDT-ASCT (n = 77)	Consolidation (KRd x 2) (n = 77)	Maintenance (Rd x 1 Yr) (n = 77)
≥ CR	43	63	75	81
VGPR	43	24	18	13
PR	13	13	7	5
Progressive disease				1*
MRD negative	33	49	65	62

*Biological progressive disease at end of maintenance, MRD positive.

CurativE StrAtegy for High-Risk Smoldering Myeloma (GEM-CESAR): PFS and OS

- 6 patients progressed (biological PD, n = 5)
 - 4 patients with PD were at ultrahigh risk

3 patients died; only 1 was considered a treatment-related death

<u>Aggressive Smoldering Curative Approach</u> <u>Evaluating Novel Therapies (ASCENT)</u>

5 years

kumar.shaji@mayo.edu

THANK YOU

Now, let's return to our patient case

Patient Scenario

- A 56-year-old woman was noted to have elevated total protein during routine evaluation and underwent additional testing
 - Hb: 13.2 g/dL
 - Serum calcium: 9.2 mg/dL, creatinine: 0.8 mg/dL, LDH: normal, B2M: 3.7 mg/dL
 - SPEP: 2.3 g/dL M spike (IgG kappa), serum FLC kappa 40 mg/dL, lambda
 1.2 mg/dL, k:l ratio 33
- Bone marrow biopsy showed 40% plasma cells, FISH shows t(4;14)
- Whole body low-dose CT negative for lytic lesions
- MRI spine shows marrow heterogeneity, no lesions

Assessment 1: Now, what would you recommend next for this patient?

- 1. Continue observation and repeat testing in 6 months
- 2. Continue observation and repeat testing in 2 months
- 3. Start treatment with lenalidomide/dexamethasone
- 4. Start treatment with bortezomib/lenalidomide/dexamethasone with plans for an ASCT after 4 cycles
- 5. Enroll in a clinical trial
- 6. Uncertain

Panel Discussion: Diagnosis and How to Manage Smoldering Myeloma

