Understanding DARZALEX®
(daratumumab) injection
About the International Myeloma Foundation

Founded in 1990, the International Myeloma Foundation (IMF) is the oldest and largest myeloma-specific charity in the world. With more than 350,000 members in 140 countries, the IMF serves myeloma patients, family members, and the medical community. The IMF provides a wide range of programs in the areas of Research, Education, Support, and Advocacy:

RESEARCH The IMF is the leader in globally collaborative myeloma research. The IMF supports lab-based research and has awarded over 100 grants to top junior and senior researchers since 1995. In addition, the IMF brings together the world’s leading experts in the most successful and unique way through the International Myeloma Working Group (IMWG), which is publishing in prestigious medical journals, charting the course to a cure, mentoring the next generation of innovative investigators, and improving lives through better care.

EDUCATION The IMF’s educational Patient & Family Seminars, Medical Center Workshops, and Regional Community Workshops are held around the world. These meetings provide up-to-date information presented by leading myeloma specialists and researchers directly to myeloma patients and their families. Our library of more than 100 publications, for patients and caregivers as well as for healthcare professionals, is updated annually and available free of charge. Publications are available in more than 20 languages.

SUPPORT Our toll-free InfoLine at 800-452-CURE (2873) is staffed by coordinators who answer questions and provide support and information via phone and email to thousands of families each year. The IMF sustains a network of more than 150 support groups and offers training for the hundreds of dedicated patients, caregivers, and nurses who volunteer to lead these groups in their communities.

ADVOCACY The IMF Advocacy program trains and supports concerned individuals to advocate on health issues that affect the myeloma community. Working both at the state and federal level, the IMF leads two coalitions to advocate for parity in insurance coverage. Thousands of IMF-trained advocates make a positive impact each year on issues critical to the myeloma community.

Learn more about the way the IMF is helping to improve the quality of life of myeloma patients while working toward prevention and a cure. Contact us at **800-452-CURE (2873)** or **818-487-7455**, or visit myeloma.org.

Table of contents

What you will learn from this booklet	4
What is Darzalex?	4
How does Darzalex work?	5
What were the results with Darzalex in clinical trials?	5
Who is a candidate for Darzalex?	7
How is Darzalex given?	7
What are the dose and schedule of Darzalex?	7
What are the possible side effects of Darzalex, and how are they managed?	7
Warnings and precautions	10
Access to Darzalex and other resources	11
In closing	11
Terms and definitions	11
What you will learn from this booklet

The IMF’s Understanding series of booklets is designed to acquaint you with treatments and supportive care measures for multiple myeloma (which we refer to simply as “myeloma”). Words in bold type are explained in the “Terms and definitions” section at the end of this booklet, as well as in a more complete compendium of myeloma-related vocabulary, the IMF’s Glossary of Myeloma Terms and Definitions, located at glossary.myeloma.org.

This booklet discusses Darzalex® (also known by its generic drug name, daratumumab). It will familiarize you with the way Darzalex works, how it has been tested, the indications for which it is approved, how and when it is administered, its possible side effects, and how to manage those side effects.

Before reading this booklet, it may be helpful to read another IMF publication, Understanding the Immune System in Myeloma, which will provide some background on the types and functions of immune system cells, how they work together to protect us, the impact of myeloma on the immune system, and the way in which Darzalex enlists immune system cells to help attack and kill myeloma cells.

What is Darzalex?

Darzalex, a highly effective new medication to treat myeloma, is a monoclonal antibody. Although antibodies are a naturally-occurring part of the immune system, Darzalex and other antibodies used to treat cancer are made in a laboratory.

A laboratory-made antibody (or immunoglobulin, as an antibody is known in scientific language) is designed to function like a naturally occurring antibody and to target a specific single protein on the surface of cancer cells. It is therefore also called a “targeted therapy.” Of the four therapies for myeloma approved by the US Food and Drug Administration (FDA) in 2015, only Darzalex has single-agent activity and was approved based on its superiority to existing treatments for myeloma.

How does Darzalex work?

Darzalex targets CD38, a glycoprotein. “CD” in CD38 stands for “cluster of differentiation,” a system for identifying the various molecules that serve as binding sites, or antigens, to which antibodies bind on the surface of cells. CD38 is widely expressed on the surface of myeloma cells, but is only expressed at low levels on other cells in the bone marrow, making it easier for them to recover after therapy. When Darzalex binds to CD38, it causes myeloma cell death in multiple ways:

- It kills myeloma cells directly.
- It recruits immune system cells called macrophages, which bind to the Darzalex-CD38 complex, and then engulf and destroy the myeloma cell.
- It attracts natural killer (NK) cells, which target and kill myeloma cells.
- It recruits complement proteins that boost the killing power of antibodies and punch holes in the targeted myeloma cells.
- It modulates the immune response by decreasing immune system suppression.

A 42-patient single-arm phase 1 study with relapsed/refractory myeloma received single-agent Darzalex. Patients in the study had myeloma for a median of 4.8 years following diagnosis. They were heavily pretreated, with a median of five prior lines of therapy. Almost all of the trial patients were refractory to their last treatment, including proteasome inhibitors like Velcade® (bortezomib) and Kyprolis® (carfilzomib) and immunomodulatory drugs like Revlimid® (lenalidomide) and Pomalyt® (pomalidomide). Overall survival (OS) in this study was 65% after the first year of follow-up. The 42-patient GEN501 study with single-agent Darzalex for relapsed/refractory myeloma had a one-year OS rate of 77%. Although patients in these clinical trials received...
Darzalex as a single agent (alone, without dexamethasone or any other drug), some patients responded very deeply to the treatment, with no sign of myeloma in the blood, bone marrow, or urine. These responses and the high rates of OS at one year after the patients had completed therapy on the trial were exceptional in this heavily pretreated population of patients. The results of these two trials led to the early approval of Darzalex, before randomized phase III studies were completed.

Two pivotal phase III clinical trials led to expanded approval for Darzalex. The first study was the 490-patient phase III CASTOR trial, in which Velcade + low-dose dexamethasone was compared to Darzalex + Velcade + low-dose dexamethasone for relapsed/refractory myeloma. The CASTOR trial was halted in March 2016 when the interim data indicated that the inclusion of Darzalex with Velcade + dexamethasone improved progression-free survival (PFS). Patients randomized to receive Velcade + dexamethasone without Darzalex were allowed to cross over at disease progression into the Darzalex arm of the study. The results of this study were published in the New England Journal of Medicine in August 2016.

The second of the two pivotal phase III trials was the 569-patient POLLUX study, in which Darzalex with Revlimid + low-dose dexamethasone was compared to Revlimid + low-dose dexamethasone for patients with relapsed or refractory myeloma who had had at least one prior line of therapy. In addition to meeting the primary end-point of improved PFS, the overall response rate (ORR) was significantly improved with the addition of Darzalex, and the rate of complete responses was doubled in the Darzalex arm. Based on these results, the data were unblinded, and patients on the Revlimid + dexamethasone study arm were allowed to cross over at disease progression to the Darzalex arm of the study. The results of this study were published in the New England Journal of Medicine in October 2016.

In August 2016, Janssen Pharmaceuticals submitted the data from the twin CASTOR and POLLUX studies to the FDA and the European Medicines Agency (EMA) to request that they broaden their approved indications for use of Darzalex in combination with Revlimid + dexamethasone or Velcade + dexamethasone as a treatment for patients with myeloma following at least one prior therapy.

In November 2016, the FDA granted this expanded approval. In April 2017, expanded approval was granted by the European Commission.

Many trials with Darzalex in various combination therapies and in different disease settings are ongoing.

Who is a candidate for Darzalex?

In the United States and in the European Union (EU), Darzalex is indicated:

- in combination with Revlimid + dexamethasone, or Velcade + dexamethasone, for the treatment of patients with myeloma who have received at least one prior therapy, and
- as monotherapy, for the treatment of patients with myeloma who have received at least three prior lines of therapy including a proteasome inhibitor (PI) and an immunomodulatory agent, or who are double-refractory to a PI and an immunomodulatory agent.

In Europe, Darzalex is currently approved by the European Commission (EC) for monotherapy of adult patients with relapsed and refractory myeloma, whose prior therapy included a PI (proteasome inhibitor) and an immunomodulatory agent, and who have demonstrated disease progression on the last therapy.

How is Darzalex given?

Darzalex is administered as an intravenous (IV, into the vein) infusion at a doctor’s office or a hospital clinic.

What are the dose and schedule of Darzalex?

- The dose of Darzalex, whether alone or in combination with Revlimid + dexamethasone, is 16 mg/kg of body weight. It is given weekly for weeks 1–8, every 2 weeks for weeks 9–24, and every 4 weeks for weeks 25 onward until disease progression.

Especially with the first dose, the infusion rate for Darzalex is very slow. The slower the rate of infusion, the less likely it is that a severe infusion reaction will occur. The first dose is usually given over a period of up to 8 hours. If it is well tolerated, subsequent doses will be given more rapidly, at your doctor’s discretion. Medications are given before and after each Darzalex infusion to help prevent a reaction.

What are the possible side effects of Darzalex, and how are they managed?

Side effects that occurred in 20% or more of the patients in the Darzalex registration clinical trials (registration trials are clinical trials that are evaluated by the FDA before a drug is approved) were infusion reactions, fatigue, nausea, back pain, fever, cough, and upper respiratory tract infection. In addition to these side effects, Darzalex may also cause blood cell counts to drop, with significant numbers of patients experiencing low red blood cell counts (anemia), low platelet counts (thrombocytopenia), and low white blood cell counts (neutropenia and lymphopenia). Blood counts are carefully monitored during treatment with Darzalex. If they are too low, your doctor will either hold your dose of Darzalex until your counts improve, or will provide you...
with supportive care in the form of transfusions or medications that stimulate the formation of new blood cells.

Because Darzalex can cause reactivation of the herpes zoster virus (the virus that causes chicken pox, which, when reactivated, causes shingles), all patients should receive preventive treatment with an anti-viral medication such as acyclovir.

Infusion reactions

Infusion reactions can occur with many intravenously-administered cancer therapies. Infusion reactions to monoclonal antibodies are caused by the release of cytokines, and are sometimes referred to as “cytokine-release syndrome.” Cytokines are small proteins that are released by cells in order to affect the behavior of other cells. Infusion reactions result from the release of cytokines from cells targeted by the monoclonal antibody as well as from immune system cells that are recruited to the targeted area. Reactions are often flu-like in nature, and include nasal congestion, fever, chills, cough, throat irritation, difficulty breathing, low blood pressure, nausea, and rash.

Infusion reactions occurred in 46% of the patients in the registration trials for Darzalex, most of them mild to moderate, and most occurring during or within four hours after the first infusion. Infusion reactions occurred in 5% of the patients with the second infusion, and in 4% with subsequent infusions. Infusion reactions that were severe enough to require hospitalization occurred in 3% of patients. There were no life-threatening infusion reactions.

Prevention and treatment of infusion reactions

Medications are given both before and after Darzalex infusions to minimize the risk of infusion reactions.

Approximately one hour before every infusion of Darzalex, all patients receive:

- An intravenously administered corticosteroid, such as methylprednisolone,
- An oral medication to reduce/prevent fever, such as acetaminophen,
- An oral or intravenous (IV) antihistamine, such as diphenhydramine.

All patients receive post-infusion medication to reduce the risk of delayed infusion reactions. An oral corticosteroid (as above) is given to the patient on the day of and the day after each Darzalex infusion.

If a reaction of any kind occurs during the administration of Darzalex, the infusion will be stopped.

Fatigue

Fatigue is commonly associated with cancer and with cancer therapy. 39% of the patients in the registration trials for Darzalex experienced fatigue, all but 2% of which was mild to moderate and did not limit the patients’ ability to care for themselves. Caution is advised if you are operating machinery, including automobiles. For more detailed information, please see the IMF publication Understanding Fatigue.

Prevention and treatment of fatigue

The effects of fatigue may be minimized by maintaining:

- A moderate level of activity
- A healthy diet and proper fluid intake
- A consistent sleeping schedule with enough rest
- Regularly scheduled visits with your doctor or healthcare provider to discuss issues that may contribute to your fatigue
- A careful review of the side effects of any other supplements and medications you are taking to ensure that they are not contributing to your fatigue.

Nausea

Approximately one quarter of the patients in the registration trials had mild to moderate nausea. There were no cases of severe nausea.

Prevention and treatment of nausea

For patients who have been treated with Darzalex in clinical trials, nausea was most likely to be a short-lived infusion-related reaction rather than an ongoing side effect. Pre- and post-infusion medications help to reduce the occurrence and severity of nausea. Your doctor may order an anti-nausea drug such as ondansetron or granisetron prior to your Darzalex infusion.

Back pain

Treatment-related (rather than myeloma-related) back pain can occur as a result of inflammatory cytokines released in reaction to the monoclonal antibody, or may occur because a patient receiving Darzalex has low levels of white blood cells (WBC) and develops an infection along with body aches and pains. Of the 25% of patients who experienced back pain in the Darzalex registration trials, only 2% experienced back pain that was severe enough to limit their ability to care for themselves.

Prevention and treatment of back pain

As with any infusion reaction, pre- and post-infusion medications can reduce or prevent infusion-related back pain. If back pain is the result of a flu infection, you should consult your doctor, who will treat you with appropriate medication.

Fever

Fever is defined as an oral temperature greater than 38°C or 100.4°F. When the white blood cell count is low, the body’s ability to defend itself against infections is compromised, and fever needs to be further evaluated immediately. Fever can also be a sign of the interaction of the monoclonal antibody with the immune system, as it may be a flu-like symptom caused by the release of cytokines in an infusion reaction.

Prevention and treatment of fever

You can minimize the effects of fever in the following ways:

- Notify your healthcare team immediately if you have a fever greater than 38.5°C or 100.4°F.
- If your doctor’s office is closed and you are not able to reach a covering physician, go to an urgent care facility or emergency room to have the fever worked up.
- Check your temperature twice a day if you feel warm.
- To avoid dehydration, drink a lot of non-alcoholic and non-caffeinated liquids.
- Take medications to control the fever as indicated.
Your treating physician may also do the following to control fever and treat its cause:

- Tell you to use over-the-counter medications (medications that you can buy without a prescription) such as acetaminophen to treat fever related to flu-like syndrome. Do not take more than the recommended amount of acetaminophen in a 24-hour time frame. There are other drugs used to reduce fever that may be an option, but you should not take any medications without first consulting a doctor familiar with your medical history.

- If you have a fever as a result of an infection, the doctor will prescribe antibiotics, or you may need to receive intravenous antibiotics in the hospital. You may also be given a drug that helps to boost the white cell count (a “colony-stimulating factor”).

Cough

Infusion reactions to Darzalex have included a range of respiratory symptoms such as cough, wheezing, throat tightness and irritation, swelling of the throat and lungs, nasal congestion, and allergic rhinitis (irritation and inflammation of the mucus membranes inside the nose). Cough was reported in 21% of the patients enrolled in the registration trials for Darzalex, all of it mild to moderate.

Prevention and treatment of cough

As with fever and cough above, you must report your symptoms to a member of your healthcare team right away. You will be treated with medications if necessary. If your infection is serious and your white blood cell count is low, the doctor may hold your Darzalex infusion until you recover or support you with medications to stimulate the production of new white blood cells.

Warnings and precautions

Interference with blood tests

- Darzalex binds to the CD38 cell surface antigen on red blood cells and interferes with blood compatibility testing, including antibody screening and cross-matching done prior to blood transfusions. Your doctor should type and screen your blood before you start treatment with Darzalex in case you need a blood transfusion subsequently.

- Darzalex may interfere with the results of serum protein electrophoresis (SPEP) and immunofixation (IFE) tests used to monitor myeloma. This can lead to false positive test results for patients with IgG kappa myeloma protein, leading to inaccuracies in detecting complete response and disease progression.

Pregnancy

There are no human data to inform a risk with use of Darzalex during pregnancy, but anti-cancer agents and monoclonal antibodies may cause fetal harm in general. To avoid exposure to the fetus, women of reproductive potential should use effective contraception during treatment and for 3 months after stopping Darzalex treatment.

Access to Darzalex and other resources

Janssen Pharmaceuticals has a CarePath program to help support patients who are receiving treatment with Darzalex. Visit darzalex.com or call 844-553-2792. CarePath case coordinators can help you with:

- Access to nurse educators,
- Referrals to independent organizations that provide assistance with costs associated with travel to and from treatment,

In closing

While a diagnosis of cancer is something you cannot control, gaining knowledge that will improve your interaction with your doctors and nurses is something you can control, and it will have a significant impact on how well you do throughout the disease course.

This booklet is not meant to replace the advice of your doctors and nurses who are best able to answer questions about your specific healthcare management plan. The IMF intends only to provide you with information that will guide you in discussions with your healthcare team. To help ensure effective treatment with good quality of life, you must play an active role in your own medical care.

We encourage you to visit myeloma.org for up-to-date information about myeloma, and to contact the IMF InfoLine with your myeloma-related questions and concerns. The IMF InfoLine consistently provides callers with the best information about myeloma in a caring and compassionate manner. IMF InfoLine specialists can be reached at InfoLine@myeloma.org, or 800-452-CURE (2873) or 818-487-7455.

Terms and definitions

Anemia: A decrease in hemoglobin contained in red blood cells that carry oxygen to the body’s tissues and organs. Anemia is usually defined as hemoglobin below 10 g/dL, with over 13–14 g/dL considered normal, and/or a decrease of ≥ 2 g/dL from the normal level for an individual.

Antibody: A protein produced by white blood cells called plasma cells that helps fight infection and disease.
Antigen: Any foreign substance (such as bacteria, a virus, toxin, or tumor) that causes the immune system to produce natural antibodies.

Antihistamine: A drug that acts against histamine, a powerful and highly irritant agent released in the body after contact with certain allergens.

Bone marrow: The soft, spongy tissue in the center of bones that produces white blood cells, red blood cells, and platelets. This is the tissue within which abnormal plasma cells build up to cause myeloma.

Calcium: A mineral found mainly in the hard part of bone matrix or hydroxyapatite. If produced or released in excess, it can build up in the bloodstream. See “Hypercalcemia.”

Cancer: A term for diseases in which malignant cells divide without control. Cancer cells can invade nearby tissues and spread through the bloodstream and lymphatic system to other parts of the body.

Complement proteins: A complex system of more than 30 proteins that act in concert to help eliminate infectious microorganisms. The complement system causes the lysis (bursting) of foreign and infected cells, the phagocytosis (ingestion) of foreign particles and cell debris, and the inflammation of surrounding tissue.

Corticosteroid: A group of natural and synthetic analogues of the hormones secreted by the pituitary gland. These include the glucocorticoids used in the treatment of myeloma such as dexamethasone, prednison, and methylprednisolone. Glucocorticoids have multiple effects, and are used for a large number of conditions.

Cytokines: Proteins secreted by cells which can stimulate or inhibit growth/activity in other cells. Cytokines are produced locally (i.e., in the bone marrow) and circulate in the bloodstream. They are normally released in response to infection.

Enzyme: A protein molecule manufactured by a cell. An enzyme acts as a catalyst that increases the rate of a specific biochemical reaction in the body.

Generic drug name: A generic drug name refers to the chemical makeup of a drug rather than to its brand name. A generic name is given to a drug before it is approved and given a brand name. After a drug goes off patent, other manufacturers may make generic versions of the drug. For example: ibuprofen is the generic name for drugs brand-named Advil® and Motrin®.

Glycoproteins: Proteins on the outer surface of cells that have sugars (carbohydrates) attached to them. They function as receptor sites where other molecules may attach to the cell.

Hypercalcemia: A higher than normal level of calcium in the blood. In myeloma patients, it usually results from bone breakdown with release of calcium from the bone into the bloodstream. This condition can cause a number of symptoms, including loss of appetite, nausea, thirst, fatigue, muscle weakness, restlessness, and confusion. See “Calcium.”

Immune system: The complex group of organs and cells that produces antibodies, cellular responses to defend the body against foreign substances such as bacteria, viruses, toxins, and cancers.

Immunoglobulin (Ig): A protein produced by plasma cells; an essential part of the body’s immune system. Immunoglobulins attach to foreign substances (antigens) and assist in destroying them. The classes (also called isotypes) of immunoglobulins are IgG, IgA, IgD, IgE, and IgM. The non-medical word for immunoglobulin is “antibody.”

Immunomodulatory drug: An agent that affects, enhances, or suppresses the immune system. Sometimes called an IMiD® compound.

Infusion reaction: An allergic or cytokine-related response to an intravenously administered cancer treatment.

Lymphopenia: Low levels of B-cells, T-cells, and natural killer (NK) cells, which together constitute 30% of white blood cells. B-lymphocytes and T-lymphocytes are responsible for the adaptive immune response, which enables immune system cells to attack specific antigens on the cell surfaces of infectious organisms, tumors, and other foreign substances.

Macrophage: A macrophage is an immune system cell whose job it is to engulf and devour any cell (including a cancer cell) that does not have proteins on its surface that identify it as a healthy body cell.

Molecule: The smallest particle of a substance that retains all the properties of the substance. A molecule is an electrically neutral group composed of two or more atoms held together by chemical bonds.

Monoclonal antibody: An artificially manufactured antibody (that is, made in a lab rather than in the human body) that is specifically designed to find and bind to cancer cells and/or immune system cells for diagnostic or treatment purposes. Monoclonal antibodies can be used alone, or they can be used to deliver drugs, toxins, or radioactive material directly to tumor cells.

Multiple myeloma: A cancer arising from the plasma cells in the bone marrow. The cancerous plasma cells are called myeloma cells.

Natural killer (NK) cell: A lymphocyte (type of white blood cell) that is a component of the innate immune system. NK cells are responsible for tumor surveillance and are able to induce strong responses against tumors through the release of cytokines.

Neutropenia: A reduced level of neutrophils.

Orphan drug: The orphan drug designation is granted by the US Food and Drug Administration (FDA) to provide incentives such as tax credits, user fee waivers, and eligibility for orphan drug exclusivity to assist and encourage the development of drugs for rare diseases.

Overall response rate (ORR): The percentage of patients in a clinical trial whose monoclonal protein decreased by at least 50% in response to treatment.

Overall survival (OS): For a group of individuals suffering from a cancer, this term denotes the chances of staying alive. It denotes the median number of individuals in the group who are likely to be alive after a particular duration of time. At a basic level, OS is representative of cure rates. OS is often used as a measure of treatment efficacy in clinical trials.
Progression-free survival (PFS): The improved survival of a patient that can be directly attributed to the treatment given for the myeloma. The time period during which the patient survives, and the myeloma does not regrow or relapse. See “Progressive disease.”

Progressive disease: Myeloma that is becoming worse or relapsing, as documented by tests. Defined as an increase of ≥ 25% from lowest confirmed response value in the myeloma protein level and/or new evidence of disease.

Proteasome inhibitor: Any drug that interferes with the normal function of the proteasome, an enzyme complex responsible for breaking down and recycling unwanted proteins in both normal cells and cancer cells.

Proteins: Substances composed of amino acids. Proteins are an essential part of all living organisms, especially as structural components of body tissues such as muscle, hair, collagen, and so forth, as well as enzymes and antibodies.

Refractory: Disease that is no longer responsive to standard treatments. Patients with refractory myeloma have had progressive disease either during treatment or within 60 days following treatment. Most clinical trials for advanced disease are for patients with relapsed and/or refractory myeloma.

Relapse: The reappearance of signs and symptoms of a disease after a period of improvement. Patients with relapsed disease have been treated, then developed signs and symptoms of myeloma at least 60 days after treatment ended. Most clinical trials for advanced disease are for patients with relapsed and/or refractory myeloma.

Side effect: Unwanted effect caused by a drug. Also known as adverse event or adverse reaction.

Thrombocytopenia: A low number of platelets in the blood. “Normal” levels vary from laboratory to laboratory. The normal level at the Mayo Clinic is 150,000–450,000. If the platelet count is less than 50,000, bleeding problems could occur. Major bleeding is usually associated with a reduction to less than 10,000.

White blood cells (WBC): General term for a variety of cells responsible for fighting invading germs, infection, and allergy-causing agents. These cells begin their development in the bone marrow and then travel to other parts of the body. Specific white blood cells include neutrophils, granulocytes, lymphocytes, and monocytes.

Visit 10steps.myeloma.org to gain a better understanding of the disease and diagnosis, and proceed through the steps to learn the best tests, treatments, supportive care, and clinical trials currently available.

As always, the International Myeloma Foundation (IMF) urges you to discuss all medical issues thoroughly with your doctor. The IMF is here to equip you with the tools to understand and better manage your myeloma. Visit the IMF website at myeloma.org or call the IMF InfoLine at 800-452-CURE (2873) or 818-487-7455 to speak with our trained information specialists about your questions or concerns. The IMF is here to help.