Long-term ixazomib maintenance is tolerable and improves depth of response following ixazomib-lenalidomide-dexamethasone induction in patients with previously untreated multiple myeloma (MM): Phase 2 study results

Shaji K. Kumar,¹ Jesus G. Berdeja,² Ruben Niesvizky,³ Sagar Lonial,⁴ Jacob P. Laubach,⁵ Mehdi Hamadani,⁶ A. Keith Stewart,⁷ Parameswaran N. Hari,⁸ Vivek Roy,⁹ Robert Vescio,¹⁰ Jonathan L. Kaufman,⁴ Deborah Berg,¹¹ Eileen Liao,¹¹ Ai-Min Hui,¹¹ S. Vincent Rajkumar,¹ Paul G. Richardson⁵

¹Division of Hematology, Mayo Clinic, Rochester, MN; ²Sarah Cannon Research Institute, Nashville, TN; ³Myeloma Center, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY; ⁴Winship Cancer Institute of Emory University, Atlanta, GA; ⁵Dana-Farber Cancer Institute, Boston, MA; ⁶West Virginia University, Mary Babb Randolph Cancer Center, Morgantown, WV; ⁷Hematology/Oncology, Mayo Clinic, Scottsdale, AZ; ⁸Division of Hematology Oncology, Medical College of Wisconsin, Milwaukee, WI; ⁹Hematology-Oncology, Mayo Clinic, Jacksonville, FL; ¹⁰Cedars-Sinai Outpatient Cancer Center at the Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA; ¹¹Takeda Pharmaceuticals International Co., Cambridge, MA
Ixazomib

- Ixazomib is an investigational, oral, reversible, and specific 20S proteasome inhibitor
 - The first oral proteasome inhibitor in clinical development
 - Physiochemical properties distinct from bortezomib

- Ixazomib has been evaluated in single-agent and combination studies in MM
 - Clinical activity of single-agent ixazomib seen in heavily pretreated patients
 - Data suggest a manageable toxicity profile with low rates of peripheral neuropathy (PN)
 - Phase 3 trials underway

Rationale

- Triplet regimens combining a proteasome inhibitor, an immunomodulatory drug, and a steroid shown to be active and well tolerated in previously untreated MM patients\(^1\text{-}^3\)
 - High response rates seen with the bortezomib, lenalidomide, dexamethasone (VRD/RVD) regimen\(^1\text{-}^2\)

- Increasing evidence suggests that extended treatment may add benefits to conventional induction strategies
 - Long-term maintenance therapy improves survival outcomes, including PFS and sometimes OS, in both the transplant and non-transplant settings
 - However, agents for continuous therapy need to be convenient and well tolerated
 - Oral weekly ixazomib may be an ideal maintenance drug in terms of tolerability/safety and convenience

Phase 1/2 study of weekly ixazomib plus lenalidomide-dexamethasone (NCT01217957)

- Triplet regimen investigated in an open-label, dose-escalation, phase 1/2 study, conducted in patients with previously untreated MM to:
 - Define the dose of ixazomib to be combined with lenalidomide and dexamethasone
 - Evaluate the efficacy and toxicity of the combination
 - Evaluate the feasibility, efficacy, and safety of long-term maintenance therapy with single-agent ixazomib

- The recommended phase 2 dose (RP2D) was determined to be ixazomib 4.0 mg weekly, on days 1, 8, 15, with lenalidomide 25 mg on days 1–21, and dexamethasone weekly, in 4-week cycles.\(^1\)
 - Results of induction therapy have been previously reported.\(^1\)
 - Here we report phase 2 efficacy and safety data in patients receiving ixazomib maintenance

Patient eligibility

Key inclusion criteria:
- Age ≥18 years
- ECOG performance status 0–2
- Adequate hepatic, renal, and hematologic function
- Measurable disease:
 - Serum M-protein ≥1 g/dL
 - Urine M-protein ≥200 mg/24 hours
 - Involved free light chain ≥10 mg/dL

Key exclusion criteria:
- Grade ≥2 PN
- Prior/concurrent deep vein thrombosis/pulmonary embolism
- Prior systemic MM therapy
Study design – Phase 2 dosing

- Mandatory thromboembolism prophylaxis with aspirin 81–325 mg QD or low-molecular-weight heparin while receiving lenalidomide–dexamethasone
- Stem cell collection allowed after 3 cycles; patients could proceed to ASCT after 6 cycles
- Ixazomib maintenance continued until progression or unacceptable toxicity
 - Ixazomib administered at last tolerated dose during induction
- Primary objective was CR+VGPR rate
65 patients enrolled\(^1\)
15 Phase 1, 50 Phase 2
Median no. of cycles: 7 (range 1–45)

17 patients off treatment before cycle 13 (maintenance)
- 2 Phase 1 patients
 - Both due to AEs
- 15 Phase 2 patients
 - 6 due to AEs
 - 4 patient withdrawals
 - 2 disease progression
 - 1 unsatisfactory response
 - 2 other

23 withdrew to initiate ASCT
9 Phase 1, 14 Phase 2

25 patients entered maintenance phase
- 4 Phase 1 patients (BSA-based dosing)
 - Received actual doses of 4.0, 4.0, 3.6, and 3.4 mg
- 21 Phase 2 patients (fixed dosing\(^2\))
 - 16 entered at 4.0 mg
 - 4 entered at 3.0 mg
 - 1 entered at 2.4 mg
 - Focus of the current presentation

Patient characteristics

<table>
<thead>
<tr>
<th></th>
<th>All phase 2 patients, n=50</th>
<th>Patients receiving maintenance, n=21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age, years (range)</td>
<td>65 (34–86)</td>
<td>68 (34–77)</td>
</tr>
<tr>
<td>Age ≥65 years, n (%)</td>
<td>25 (50)</td>
<td>12 (57)</td>
</tr>
<tr>
<td>Age ≥75 years, n (%)</td>
<td>9 (18)</td>
<td>2 (10)</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>30 (60)</td>
<td>13 (62)</td>
</tr>
<tr>
<td>White, n (%)</td>
<td>42 (84)</td>
<td>16 (76)</td>
</tr>
<tr>
<td>ISS disease stage at diagnosis, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>25 (50)</td>
<td>14 (67)</td>
</tr>
<tr>
<td>II</td>
<td>19 (38)</td>
<td>7 (33)</td>
</tr>
<tr>
<td>III</td>
<td>6 (12)</td>
<td>0</td>
</tr>
<tr>
<td>MM subtype, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IgG</td>
<td>34 (68)</td>
<td>16 (76)</td>
</tr>
<tr>
<td>IgA</td>
<td>9 (18)</td>
<td>3 (14)</td>
</tr>
<tr>
<td>IgD</td>
<td>1 (2)</td>
<td>0</td>
</tr>
<tr>
<td>Light chain</td>
<td>6 (12)</td>
<td>2 (10)</td>
</tr>
<tr>
<td>Median creatinine clearance, mL/min</td>
<td>85.3</td>
<td>83.5</td>
</tr>
</tbody>
</table>
Cytogenetics

<table>
<thead>
<tr>
<th>Patients with cytogenetic assessment, N*</th>
<th>All phase 2 patients, n=50</th>
<th>Patients receiving maintenance, n=21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional/karyotype</td>
<td>7 (15)</td>
<td>3 (16)</td>
</tr>
<tr>
<td>Molecular/FISH</td>
<td>15 (32)</td>
<td>6 (32)</td>
</tr>
<tr>
<td>Both</td>
<td>25 (53)</td>
<td>10 (53)</td>
</tr>
<tr>
<td>Unfavorable cytogenetics†, n (%)</td>
<td>6 (13)</td>
<td>3 (16)</td>
</tr>
<tr>
<td>Type of cytogenetic abnormality, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>del 13 (by metaphase cytogenetics)</td>
<td>2 (4)</td>
<td>2 (11)</td>
</tr>
<tr>
<td>del 17</td>
<td>2 (4)</td>
<td>1 (5)</td>
</tr>
<tr>
<td>t(4;14)</td>
<td>1 (2)</td>
<td>0</td>
</tr>
<tr>
<td>t(14;16)</td>
<td>1 (2)</td>
<td>1 (5)</td>
</tr>
<tr>
<td>1q amplification</td>
<td>1 (2)</td>
<td>0</td>
</tr>
</tbody>
</table>

*No sample collected for 3 patients. †Unfavorable cytogenetics includes del 17, t(4;14), t(14;16), and 1q amplification abnormalities detected by FISH or metaphase cytogenetics and del 13 detected by metaphase cytogenetics.
Treatment exposure

<table>
<thead>
<tr>
<th>At data cut-off (October 2, 2014)</th>
<th>Patients receiving maintenance, n=21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median cycles of ixazomib received, n (range)</td>
<td>31 (15–35)</td>
</tr>
<tr>
<td>Total (including induction and maintenance cycles)</td>
<td>19 (3–23)</td>
</tr>
<tr>
<td>Maintenance cycles</td>
<td></td>
</tr>
<tr>
<td>Median treatment duration, months (range)</td>
<td>29.0 (16.3–33.3)</td>
</tr>
<tr>
<td>Maintenance duration, months (range)</td>
<td>19.8 (2.3–22.9)</td>
</tr>
<tr>
<td>Mean relative dose intensity* of ixazomib overall / during induction / during maintenance, %</td>
<td>92 / 95 / 89.5</td>
</tr>
<tr>
<td>Patients remaining on ixazomib maintenance, n (%)</td>
<td>11 (52%)</td>
</tr>
</tbody>
</table>

*Dose taken/dose prescribed

- Among the 29 patients in phase 2 who did not proceed to maintenance, median number of cycles of ixazomib received was 6 (1–12)
 - Median cycle of first stem cell mobilization (n=14) was cycle 4 (3–9), and patients who received ASCT received a median of 6 (3–12) cycles of ixazomib
Among the 14 patients who discontinued induction to undergo ASCT, best response to induction included 4 (29%) sCR, 4 (29%) VGPR, and 6 (43%) PR.

- Response following ASCT are not included in the above data.
10 (48%) patients improved their response during maintenance:
- 2 VGPR to nCR, 5 VGPR to CR, 1 VGPR to sCR, and 2 CR to sCR
All 21 patients who received ixazomib maintenance were alive after follow-up of 25.1–33.9 months, including a median follow-up from start of maintenance of 19.9 months (range 13.4–22.2).
Most common drug-related AEs (>20% patients overall, or with new onset in >1 patient during maintenance)

- Any AE
- Skin and SC tissue disorders
- Diarrhea
- Fatigue
- Nausea
- Peripheral neuropathies NEC
- Constipation
- Insomnia
- Vomiting
- Dysgeusia
- Abdominal distension
- Malaise
- Muscle spasms
- Anemia
- Thrombocytopenia
- Hypokalemia
- Pain in extremity
- Headache

Patients, %

Overall
- During induction
- During maintenance

NEC, not elsewhere classified
Drug-related grade 3 AEs were reported in 13 (62%) patients overall, including in 11 (52%) during induction and in 3 (14%) patients during maintenance.

There were no grade 4 drug-related AEs reported at any time during induction and maintenance among the 21 patients who received ixazomib maintenance.
Serious AEs (SAEs) and dose reductions

- Of the 21 patients who received maintenance therapy, 10 (48%) reported an SAE at any time during induction and maintenance treatment
 - Including 3 (14%) with drug-related SAEs

- SAEs were reported in 4 (19%) patients during ixazomib maintenance:
 - Grade 3 acute myocardial infarction; grade 3 pneumonia; grade 3 orthostatic hypotension; grade 2 ventricular extrasystoles
 - All were considered not related to treatment

- In total, 17 (81%) patients required any study drug dose reduction due to an AE during induction
 - Only 2 (10%) patients required ixazomib dose reduction during maintenance, due to PN and neuralgia, respectively

- There were no discontinuations due to AEs and no on-study deaths
Conclusions

- The all-oral combination of ixazomib, lenalidomide, and dexamethasone is active as induction therapy, with a manageable safety profile, at the RP2D in previously untreated MM patients
 - 90% of patients achieved PR or better, including a ≥VGPR rate of 59% and a CR rate of 22%, after up to 12 cycles of induction
 - Common AEs included skin and SC tissue disorders, diarrhea, fatigue, nausea, and peripheral neuropathy

- Data on 21 patients who received maintenance therapy indicate that single-agent ixazomib maintenance for up to 1.9 years was feasible, with a generally manageable safety profile, in patients not undergoing ASCT
 - Ixazomib maintenance improved responses following triplet induction therapy, with 48% of patients showing increased response depth during maintenance
 - Rate of CR+nCR increased from 24% after induction to 62%, with 71% ≥VGPR
 - Ixazomib maintenance contributed to durable responses
 - New-onset toxicity during single-agent ixazomib maintenance was limited

- A phase 3 trial of ixazomib plus lenalidomide–dexamethasone versus placebo plus lenalidomide–dexamethasone in patients with previously untreated MM is currently enrolling (TOURMALINE-MM2; NCT01850524)
Acknowledgments

We thank all the patients and their families who participated in this study.

We also thank the physicians, research nurses, study coordinators, and research staff involved in the study.

We acknowledge Steve Hill of FireKite, part of KnowledgePoint360, an Ashfield company, for writing assistance during the development of this presentation, which was funded by Takeda Pharmaceuticals International Co.